
ENVIRONMENTAL PRODUCT DECLARATION

ALLURA FLEX

FORBO FLOORING SYSTEMS
RESILIENT FLOOR COVERING

FLOORING SYSTEMS

Allura Flex is a collection of high quality, dimensionally stable, heterogeneous vinyl tiles that have been specifically designed for loose lay installation. Ideal for use in renovation projects, with raised access floors or any in project where speed of installation is required. The combination of a glass fleece carrier and multiple calandered layers makes Allura Flex unprecedented in strength, performance and quality.

Forbo was the first flooring manufacturer to publish a complete Life Cycle Assessment (LCA) report verified by CML in 2000.In addition Forbo is now to publish Environmental Product Declarations (EPD) for all products including full LCA reports. This EPD is using all recognized flooring Product Category Rules and is including additional information to show the impacts on human health and ecotoxicity. By offering the complete story we hope that our stakeholders will be able to use this document as a tool that will translate the environmental performance of Allura Flex into the true value and benefits to all our customers and stakeholders alike.

For more information visit; www.forbo-flooring.com

According to ISO 14025 & EN 15804

This declaration is an environmental product declaration in accordance with ISO 14025 and EN15804 that describes the environmental characteristics of the aforementioned product. It promotes the development of sustainable products. This is a certified declaration and all relevant environmental information is disclosed. This EPD may not be comparable to other declarations if they do not comply with ISO 14025, EN 15804 and the reference PCR.

UL Environment

PROGRAM OPERATOR	333 Pfingsten Road			
	Northbrook, IL 60611			
	Forbo Flooring B.V.			
DECLARATION HOLDER	Industrieweg 12			
Bederitation	P.O. Box 13			
	NL-1560 AA Krommenie			
DECLARATION NUMBER	12CA64879.108.1			
DECLARED PRODUCT	Allura Flex			
REFERENCE PCR	Flooring: Carpet, Resilient, Laminate,	Ceramic, and Wood (NSF 2012)		
DATE OF ISSUE	20 June 2013			
PERIOD OF VALIDITY	5 Years			
	Product definition and information abo	out building physics		
	Information about basic material and the material's origin			
00175170 05 7175	Description of the product's manufacture			
CONTENTS OF THE DECLARATION	Indication of product processing			
DECLARATION	Information about the in-use condition	s		
	Life cycle assessment results			
	Testing results and verifications			
The PCR review was conduc	etad by:	NSF International		
The FOR Teview was conduc	sted by.	Accepted by PCR Review Panel		
		ncss@nsf.org		
14025 and EN 15804 by Und		Reise Em.		
☐ INTERNAL	⊠ EXTERNAL	Loretta Tam, ULE EPD Program Manager		
This life cycle assessment w accordance with ISO 14044,	as independently verified in EN 15804 and the reference PCR by:	Thoutallo		

Trisha Montalbo, PE International

According to ISO 14025 & EN 15804

Product Definition

Product Classification and Description

This declaration covers a broad range of designs and colors. Allura Flex from Forbo Flooring is a resilient floor covering complying with all the requirements of EN-ISO 11638: Resilient floor coverings – Heterogeneous polyvinyl chloride flooring on foam - Specification. The key raw materials include PVC, plasticizer, mineral filler, stabilizers and glass fiber.

Allura Flex is produced by Forbo Flooring and is sold worldwide.

Allura Flex is a range of loose lay vinyl floor tiles of 5.0mm nominal thickness with a 1.00mm wear layer.

Allura Flex consists of 6 layers as illustrated in the following diagram.

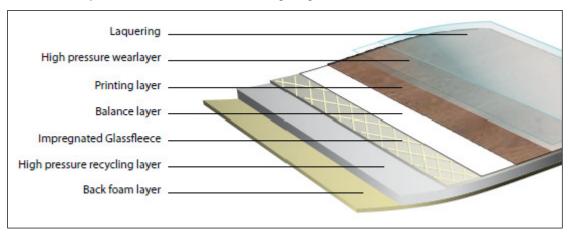


Figure 1: Typical construction

- 1. **Lacquer surface:** This PU lacquer coating for easy cleaning & maintenance gives enhanced protection against scuffing, scratching, dirt pick up and staining.
- 2. **Wear layer:** The 1.00mm transparent wear layer meets the requirement for Type 1 wear layer according to EN-ISO10582. This topcoat layer is generally transparent but for certain ranges will be pigmented and may also contain design enhancing decorative PVC chips or spheres.
- 3. **Printed layer:** The decorative design is printed, using environmentally friendly water-based inks, on to a white PVC plastisol coating (balance layer)
- 4. **Intermediate layer:** Non-woven glass fleece that is impregnated with a highly filled PVC plastisol to give the product strength & excellent dimensional stability.
- 5. Recycling layer: Calendered layer containing a minimum of 50% recycled production waste.
- 6. **Foam Backing**: a mechanically foamed PVC backing which contributes to loose lay properties.

According to ISO 14025 & EN 15804

Range of Applications

Allura Flex is classified in accordance with EN-ISO 11638 to be installed in the following use areas defined in EN-ISO 10874:

Area of application			
	Class 34		
Commercial			
	Class 42		
Industrial			

Product Standards

The products considered in this EPD have the following technical specifications:

 Meets or exceeds all technical requirements in EN-ISO 11638 Resilient floor coverings – Heterogeneous polyvinyl chloride flooring on foam - Specification

Allura Flex meets the requirements of EN 14041

Accreditations

- ISO 9001 Quality Management System
- ISO 14001 Environmental Management System
- o AgBB requirements
- o CHPS section 01350

According to ISO 14025 & EN 15804

Delivery Status

Table 1: Specification of delivered product

Characteristics	Nominal Value	Unit
Product thickness	5.00	mm
Product Weight	6.55	kg/m²
Tile size	Planks – 100 x 20 Tiles – 50 x 50	cm

Material Content

Material Content of the Product

Table 2: Composition of Allura Flex

Component	Material	Availability	Amount [%]	Origin of raw material
Binder	PVC	Nonrenewable – limited	36	Europe
Diridei	DINP & Dibenzoates	Nonrenewable - limited	16.5	Europe
Filler	Dolomite	Abundant mineral	25	Europe
Stabilizers and process additives	Epoxidized esters & proprietary mixtures & lubricants	1.2% natural oils, others nonrenewable - limited	3.5	Europe
Carrier	Glass fiber tissue	Nonrenewable - limited	< 1.0	Netherlands/Germany
Pigments	Titanium Dioxide	Nonrenewable - limited	<0.2	Europe
Finish	Various chemicals	Nonrenewable - limited	<0.2	Europe
Recycle	Post production waste		18	

Production of Main Materials

PVC: Polymer which is produced by the polymerisation of vinyl chloride monomer.

Plasticizers: Plasticizer is obtained by esterification of an alcohol and acid. Plasticizer is added to increase the flexibility, durability and longevity of the floor covering.

Stabilizer Ba/Zn: Mixed metal stabilizer made from Barium and Zinc stearate. It is used to avoid PVC degradation during processing at relative high temperature.

Dolomite: An abundant mineral mined in northern Norway.

Glass fibre tissue: Glass fibres are mixed with a binder to produce a glass fleece which is used as a substrate for floor coverings and imparts excellent dimensional stability to the finished product.

Titanium dioxide: A white pigment produced from the mineral rutile, a naturally occurring form of titanium dioxide. The production of the pigment is a large-scale chemical process

Recycle: Mixture of process wastes from the manufacture of various PVC floorcoverings.

According to ISO 14025 & EN 15804

Production of the Floor Covering

The production of Allura Flex includes the following processes:

- Preparation of PVC plastisols (mixture of PVC, plasticizer and additives, may also contain filler and pigments)
- Impregnation of the glass fleece with a highly filled plastisol followed by the application of a thin white plastisol coating.
- Rotogravure printing, using water based inks, to produce wood, stone or abstract designs.
- Application of calendered PVC topcoat and PU lacquer.
- An intermediate backing layer is applied to the underside of the impregnated glass fleece. This plasticized PVC layer, which is applied by a calender, contains a minimum of 50% of reused production waste.
- The final backing layer, a mechanically foamed PVC plastisol, is then applied to the calendered layer. Both the
 backing layer and the wear layer are then mechanically embossed to enhance the loose lay properties of the
 backing and to enhance the visual appearance of the surface, respectively.
- The finished product is then trimmed, inspected and cut into tiles of a specified size.
- o Trimmings & rejected product are recycled back into the calendered backing layer.

Health, Safety and Environmental Aspects during Production

ISO 14001 Environmental Management System

Production Waste

Rejected material and the cuttings of the trimming stage are reused in the manufacturing process. Packaging materials are collected separately and externally recycled.

Delivery and Installation of the Floor Covering

Delivery

A worldwide distribution by truck and container ship is considered. On average every square meter of Allura Flex is transported as follows:

0	Transport distance 40 t truck	624 km
0	Transport distance 7.5t truck (Fine distribution)	279 km
0	Capacity utilization trucks (including empty runs)	85%
0	Transport distance Ocean ship	1520 km
0	Capacity utilization Ocean ship	48%

According to ISO 14025 & EN 15804

Installation

Because of the specific techniques used during the installation of Allura Flex approximately 4.5% of the material is cut off as installation waste. For installation of Flex tiles on the floor a scenario has been modeled assuming 0.05 kg/m² of adhesive is applied to the sub-floor. Waste during the installation process may be recycled through the manufacturer's facility or disposed of via landfill or incineration.

Health, Safety and Environmental Aspects during Installation

Forbo flooring recommends the use of (low) zero emission tackifiers for installation of Allura Flex.

Waste

Waste during the installation process may be recycled as floor covering through the manufacturers' facilities or disposed of via land fill or thermally recycled in a waste incineration plant.

Packaging

Cardboard boxes and wooden pallets can be collected separately and should be used in a local recycling / reuse processes. In the calculation model 100% incineration is taken into account for which there is a credit received.

Use stage

The service lifetime of a floor covering for a certain application on a floor is too widespread to give one common number. For this EPD model the reference service lifetime (RSL) is set to one year. This means that all impacts for the use phase are based on the cleaning and maintenance model for one year. Depending on the area of use, the technical lifetime advised by the manufacturer and the estimated time on the floor by the customer, the service lifetime can be determined. The use phase impacts should be calculated with the foreseen service life to arrive at the total environmental impact.

Cleaning and Maintenance

Level of use	Cleaning Process	Cleaning Frequency	Consumption of energy and resources
	Vacuuming	Twice a week	Electricity
Commercial/Residential	Wet Cleaning	Once a week	Hot water Neutral detergent

For the calculations the following cleaning regime is considered:

- Dry cleaning with a 1.5 kW vacuum cleaner for 0.21 min/m², twice a week. This equates to 0.55 kWh/m²*year.
- Once a week wet cleaning with 0.062 l/m² water and 0.0008 kg/m² detergent. This result in the use of 3.224 l/m²*year water and 0.04 kg/m²*year detergent. The wet cleaning takes place without power machine usage. Waste water treatment of the arising waste water from cleaning is considered (Data sourced from Forbo GABI model).

The cleaning regime that is recommended in practice will be highly dependent on the use of the premises where the floor covering is installed. In high traffic areas more frequent cleaning will be needed compared to areas where there is low traffic. The use of an entrance mat of at least four steps will reduce the cleaning frequency.

The cleaning regime used in the calculations is suitable for high traffic areas.

According to ISO 14025 & EN 15804

Prevention of Structural Damage

All newly laid floor covering should be covered and protected with a suitable non-staining protective covering if other building activities are still in progress. Use protective feet on chairs and tables to reduce scratching. Castor wheels should be suitable for resilient floor coverings.

Health Aspects during Usage

Allura tiles are complying with:

- o AgBB requirements
- o CHPS section 01350

End of Life

The deconstruction of installed Allura Flexs from the floor can be done manually and, therefore, no electrical energy is required for this process.

For the End of Life stage 20% landfill and 80% incineration is taken into account, the average distance to the incineration plant or landfill facility per lorry is set to 200 km.

Life Cycle Assessment

A full Life Cycle Assessment has bee carried out according to ISO 14040 and ISO 14044.

The following Life Cycle Stages are assessed:

- Production Stage (Raw material acquisition, transportation to Manufacturing and Manufacturing)
- o Transport Gate to User
- Installation Stage
- o Use Stage
- End of Life Stage

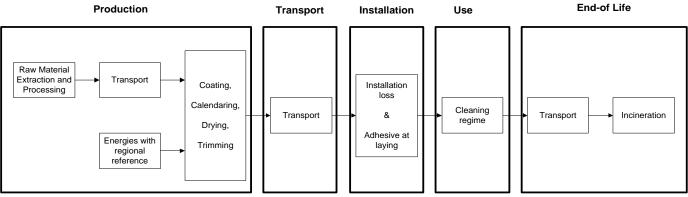


Figure 2: Flow chart of the Life Cycle Assessment

According to ISO 14025 & EN 15804

Description of the Declared Functional Unit

The functional unit is one square meter of installed product and the use stage is considered for one year of service life.

Cut off Criteria

The cut-off criteria shall be 1% of renewable and non-renewable primary energy usage and 1% of the total mass of the unit process. The total neglected input flows per module shall be a maximum of 5% of energy usage and mass.

In practice, in this assessment, all data from the production data acquisition are considered, i.e. all raw materials used as per formulation, use of water, electricity and other fuels, the required packaging materials, and all direct production waste. Transport data on all considered inputs and output material are also considered.

Allocations

In the present study some allocations have been made. Detailed explanations can be found in the chapters below.

Co-product allocation

No co-product allocation occurs in the product system.

Allocation of multi-input processes

The Production and End of Life stage include incineration plants. In these processes different products are treated together within a process. The allocation procedures followed in these cases are based on a physical classification of the mass flows or calorific values.

Credits from energy substitution are allocated to the production stage, because the gained energy from energy substitution is lower than the energy input in this stage. The same quality of energy is considered.

Allocation procedure of reuse, recycling and recovery

The installation waste and end of life waste is fed into incineration processes. Incineration processes include cogeneration processes which give thermal and power energy as outputs. It is assumed that this recovered energy offsets that produced by the European average grid mix and thermal energy generation from natural gas.

Description of the allocation processes in the LCA report

The description of allocation rules in of this LCA report meets the requirements of the PCR.

Background Data

As a general rule, specific data derived from specific production processes or average data derived from specific production processes have been used as the first choice as a basis for calculating an EPD.

For life cycle modeling of the considered products, the GaBi 6 Software System for Life Cycle Engineering, developed by PE INTERNATIONAL AG has been used. All relevant LCA datasets are taken from the GaBi 6 software database. The datasets from the database GaBi are documented in the online documentation. To ensure comparability of results in the LCA, the basic data of GaBi database were used for energy, transportation and auxiliary materials.

According to ISO 14025 & EN 15804

Data Quality

The requirements for data quality and LCA data correspond to the specifications of the PCR.

Foreground data are based on 1 year averaged data (year 2012). The reference ages of LCA datasets vary but are given in the table in the Appendix. The time period over which inputs to and outputs from the system is accounted for is 100 years from the year for which the data set is deemed representative. The technological LCA of the collected data reflects the physical reality of the declared product. The datasets are complete, conform to the system boundaries and the criteria for the exclusion of inputs and outputs and are geographical representative for the supply chain of Forbo flooring.

For life cycle modeling of the considered products the GaBi 6 Software System for Life Cycle Engineering, developed by PE INTERNATIONAL AG, is used. All relevant LCA datasets are taken from the GaBi 6 software database. The last revision of the used data sets took place within the last 10 years.

System Boundaries

<u>Production Stage</u> includes provision of all materials, products and energy, packaging processing and its transport, as well as waste processing up to the end-of waste state or disposal of final residues during the product stage.

<u>Transport and Installation Stage</u> includes provision of all materials, products and energy, as well as waste processing up to the end-of-waste state or disposal of final residues during the construction stage. These information modules also include all impacts and aspects related to any losses during this construction stage (i.e. production, transport, and waste processing and disposal of the lost products and materials). For the transportation a worldwide distribution is considered.

<u>Use Stage</u> includes provision and transport of all materials, products and related energy and water use, as well as waste processing up to the end-of-waste state or disposal of final residues during this part of the use stage. These information modules also include all impacts and aspects related to the losses during this part of the use stage (i.e. production, transport, and waste processing and disposal of the lost products and materials).

<u>End of Life Stage</u> includes provision and all transports, provision of all materials, products and related energy and water use. It also includes any declared benefits and loads from net flows leaving the product system that have not been allocated as co-products and that have passed the end-of-waste state in the form of reuse, recovery and/or recycling potentials.

Power mix

The selection of LCA data for the electricity generation is in line with the PCR.

The products are manufactured in Coevorden, the Netherlands. The GaBi 6 Hydropower dataset has therefore been used (reference year 2009). The energy supplier is providing Forbo with a certificate every year.

CO₂-Certificates

No CO₂-certificates are considered in this study.

According to ISO 14025 & EN 15804

Life Cycle Inventory Analysis

The total primary energy for one square meter installed Allura Flex is presented in table 3 with their specific energy resources.

Table 3: Primary energy for all life cycle stages for Allura Flex for one year

Non-renewable primary energy by	Unit	Total Life	Total Life	Production	Transport	Installation	Use	End of
resources		cycle (MJ)	cycle (%)				(1 yr)	Life
Total non-renewable primary energy	MJ	365,77	100	356,71	5,2	-0,12	5,84	-1,87
Crude oil	MJ	138,69	38	125,65	4,77	0,86	0,63	6,77
Hard coal	MJ	24,47	7	18,39	0,01	-0,1	0,98	5,19
Lignite	MJ	18,13	5	14,77	0,01	-0,08	0,74	2,69
Natural gas	MJ	161,62	44	179,34	0,38	-0,43	1,74	-19,41
Uranium	MJ	22,84	6	18,56	0,02	-0,35	1,74	2,89
Renewable primary energy by	Unit	Total Life	Total Life	Production	Transport	Installation	Use	End of
resources		cycle (MJ)	cycle (%)				(1 yr)	Life
Total renewable primary energy	MJ	29,92	100	29,59	0,13	-0,18	0,79	-0,41
Geothermical	MJ	0,05	0,2	0,04	0	0	0,01	0
Hydro power	MJ	13,69	46	13,39	0	-0,08	0,32	0,06
Solar energy	MJ	12,88	43	12,76	0,13	-0,05	0,23	-0,19
Wind power	MJ	3,29	11	3,4	0	-0,05	0,23	-0,29

The total amount of renewable and non-renewable primary energy is predominated by the production stage for a one year usage; within the production stage the main contributors are the raw material production and energy generation.

Waste and Non-renewable Resource Consumption

In table 4 the non-renewable resource consumption and waste production is shown for all life cycle stages for a one year usage.

Table 4: Waste categories and non-renewable resources for Allura Flex (one year)

Wastes	Unit	Total Life cycle	Production	Transport	Installation	Use (1yr)	End of Life
Hazardous waste	[kg]	9.38E-03	5.58E-03	0.00E+00	3.70E-03	0.00E+00	0.00E+00
Non-hazardous waste	[kg]	2.79E+01	2.26E+01	1.61E-02	2.18E-01	1.12E+00	3.98E+00
Radioactive waste	[kg]	8.57E-03	7.14E-03	7.07E-06	7.59E-05	7.12E-04	6.36E-04
Resources	Unit	Total Life cycle	Production	Transport	Installation	Use (1yr)	End of Life
Nonrenewable resources	[kg]	40,44	29,94	0,02	-0,02	1,13	9,38

According to ISO 14025 & EN 15804

Life Cycle Assessment

In table 5 the environmental impacts for one lifecycle are presented for Allura Flex. In table 6 the environmental impacts are presented for all the lifecycle stages.

Table 5: Results of the LCA – Environmental impacts one lifecycle (one year) – Allura Flex

Impact Category : CML 2001 - Nov. 2010	Allura Flex	Unit
Global Warming Potential (GWP 100 years)	2.77E+01	kg CO2-Equiv.
Ozone Layer Depletion Potential (ODP. steady state)	2.98E-07	kg R11-Equiv.
Acidification Potential (AP)	4.80E-02	kg SO2-Equiv.
Eutrophication Potential (EP)	6.97E-03	kg Phosphate-Equiv.
Photochem. Ozone Creation Potential (POCP)	1.55E-02	kg Ethene-Equiv.
Abiotic Depletion Potential Elements (ADPE)	7.47E-05	kg Sb-Equiv.
Abiotic Depletion Potential Fossil (ADPF)	3.64E+02	[MJ]

Table 6: Results of the LCA – Environmental impact for Allura Flex (one year)

Impact Category : CML 2001 - Nov. 2010	Unit	Production	Transport	Installation	Use (1yr)	End of Life
Global Warming Potential	kg CO2-Equiv.	1.67E+01	6.11E-01	5.11E-01	3.22E-01	9.55E+00
Ozone Layer Depletion Potential	kg R11-Equiv.	4.91E-08	5.39E-12	4.26E-09	2.30E-09	2.42E-07
Acidification Potential	kg SO2-Equiv.	3.34E-02	5.61E-03	2.50E-05	1.35E-03	7.57E-03
Eutrophication Potential	kg PSO4-Equiv.	5.69E-03	6.94E-04	1.86E-05	8.29E-05	4.82E-04
Photochem. Ozone Creation Potential	kg Ethene-Equiv.	1.49E-02	-6.83E-05	3.07E-05	9.17E-05	5.39E-04
Abiotic Depletion Elements	kg Sb-Equiv.	6.62E-05	1.28E-08	1.78E-07	6.36E-08	8.26E-06
Abiotic Depletion Fossil	MJ	3.56E+02	5.20E+00	-1.38E-01	5.78E+00	-2.96E+00

The relative contribution of each process stage to each impact category for Allura Flex is shown in figure 4.

According to ISO 14025 & EN 15804

Figure 4: relative contribution of each process stage to each impact category for Allura Flex for a one year usage.

Interpretation

The interpretation of the results has been carried out considering the assumptions and limitations declared in the EPD, both methodology- and data-related for a <u>one year usage</u>.

In most of the impact categories (ADPE, ADPF, AP, EP, GWP and POCP) the production stage has the main contribution to the overall impact. The raw material supply is the key contributor with a share of 59 – 98% of the total impact of the production stage.

For the transportation stage a significant contribution comes from the categories AP and EP in which the container ship used for a worldwide distribution is the major contributor.

The installation stage has a very low impact due to the fact that Allura Flex is a loose lay product. Only GWP and ODP have a minor impact caused by the impact of disposal of the packaging and installation waste.

For the use stage the main impact categories are ADPF, AP, EP and GWP, mainly caused by the use of electricity for cleaning.

At the End of Life stage the main impact categories are AP, ADPE, GWP and ODP, this is mainly due to the fact that 80% of the waste is incinerated in these calculations.

According to ISO 14025 & EN 15804

Additional Environmental Information

To be fully transparant Forbo Flooring does not only want to declare the environmental impacts required in the PCR, but also the impacts on human health and eco-toxicity. Furthermore the outcome of the calculations according to the european Standard EN15804 are published in this section.

Toxicity

For this calculations the USEtoxTM model is used as being the globally recommended preferred model for characterization modeling of human and eco-toxic impacts in LCIA by the United Nations Environment Programme SETAC Life Cycle Initiative.

According to the "ILCD Handbook: Recommendations for Life Cycle Impact Assessment in the European context" the recommended characterization models and associated characterization factors are classified according to their quality into three levels:

- Level I (recommended and satisfactory),
- Level II (recommended but in need of some improvements)
- Level III (recommended, but to be applied with caution).

A mixed classification sometimes is related to the application of the classified method to different types of substances. USEtoxTM is classified as Level II / III, unlike for example the CML impact categories which are classified as Level I.

Table 7: Results of the LCA - Environmental impacts one lifecycle (one year) - Allura Flex

Impact Category : USEtox	Allura Flex	Unit
Eco toxicity	2.08E+00	PAF m3.day
Human toxicity, cancer	1.59E-08	Cases
Human toxicity, non-canc.	3.75E-06	Cases

In the following table the impacts are subdivided into the lifecycle stages.

Table 8: Results of the LCA – Environmental impact for Allura Flex (one year)

Impact Category : USEtox	Unit	Production	Transport	Installation	Use (1yr)	End of Life
Eco toxicity	PAF m3.day	2.04E+00	3.18E-02	-4.93E-03	2.78E-02	-7.09E-03
Human toxicity, cancer	cases	1.55E-08	1.31E-10	-2.10E-11	2.66E-10	1.70E-11
Human toxicity, non-canc.	cases	3.67E-06	5.95E-08	-1.18E-08	5.50E-08	-2.84E-08

Interpretation

The interpretation of the results has been carried out considering the assumptions and limitations declared in the EPD, both methodology- and data-related for a one year usage.

In all the Toxicity categories the production stage is the main contributor to the total overall impact. The raw material supply has a share of more than 98% of the production stage, therefore the choice of raw materials can highly influence the Toxicity categories.

The Use stage has a minor impact of \pm 1.5% for all three impact categories. This is mainly due to the use of electricity for the cleaning of the floor. The used cleaning regime of vacuuming twice a week is very conservative and will in practice most of the times be lower.

According to ISO 14025 & EN 15804

EN15804 Results

In this section the calculations have been conducted and verified according to the requirements of the European Standard EN 15804. In addition, calculations followed the document "Part A: Calculation Rules for the Life Cycle Assessment and Requirements on the Background Report", however, Part A was not included as a part of the verification.

Table 9: Results of the LCA - Environmental impact for Allura Flex (one year)

	Manufacturing Installation Use (1yr) End of Life		Credits						
Unit	A1-3	A4	A5	B2	C1	C2	C3	C4	D
[kg CO2-Equiv.]	1,52E+01	6,11E-01	7,09E-01	3,22E-01	1,70E-02	1,74E-01	9,10E+00	2,65E-01	-1,98E-01
[kg CFC11-Equiv.]	4,89E-08	5,39E-12	4,34E-09	2,30E-09	4,31E-09	3,63E-12	2,33E-07	4,36E-09	-7,94E-11
[kg SO2-Equiv.]	3,01E-02	5,61E-03	5,21E-04	1,35E-03	1,16E-04	8,74E-04	6,45E-03	1,23E-04	-4,96E-04
[kg PO43 Equiv.]	5,36E-03	6,94E-04	5,17E-05	8,29E-05	4,21E-06	2,10E-04	2,43E-04	2,49E-05	-3,31E-05
[kg Ethen Equiv.]	1,36E-02	-6,83E-05	7,07E-05	9,17E-05	5,96E-06	9,32E-05	3,68E-04	7,12E-05	-4,00E-05
[kg Sb Equiv.]	6,29E-05	1,28E-08	1,94E-07	6,36E-08	1,17E-09	8,01E-09	8,26E-06	-1,83E-09	-1,61E-08
[MJ]	3.18E+02	5.20E+00	3.21E+00	5.78E+00	3.26E-01	2.38E+00	-5.91E+00	2.36E-01	-3,34E+00
	[kg CO2-Equiv.] [kg CFC11-Equiv.] [kg SO2-Equiv.] [kg PO43 Equiv.] [kg Ethen Equiv.] [kg Sb Equiv.]	Unit A1-3 [kg CO2-Equiv.] 1,52E+01 [kg CFC11-Equiv.] 4.89E-08 [kg SO2-Equiv.] 3.01E-02 [kg PO43 Equiv.] 5.36E-03 [kg Ethen Equiv.] 1.36E-02 [kg Sb Equiv.] 6.29E-05	Unit A1-3 A4 [kg CO2-Equiv.] 1,52E+01 6,11E-01 [kg CFC11-Equiv.] 4,89E-08 5,39E-12 [kg SO2-Equiv.] 3,01E-02 5,61E-03 [kg PO43 Equiv.] 5,36E-03 6,94E-04 [kg Ethen Equiv.] 1,36E-02 -6,83E-05 [kg Sb Equiv.] 6,29E-05 1,28E-08	Unit A1-3 A4 A5 [kg CO2-Equiv.] 1,52E+01 6,11E-01 7,09E-01 [kg CFC11-Equiv.] 4,89E-08 5,39E-12 4,34E-09 [kg SO2-Equiv.] 3,01E-02 5,61E-03 5,21E-04 [kg PO43 Equiv.] 5,36E-03 6,94E-04 5,17E-05 [kg Ethen Equiv.] 1,36E-02 -6,83E-05 7,07E-05 [kg Sb Equiv.] 6,29E-05 1,28E-08 1,94E-07	Unit A1-3 A4 A5 B2 [kg CO2-Equiv.] 1,52E+01 6,11E-01 7,09E-01 3,22E-01 [kg CFC11-Equiv.] 4,89E-08 5,39E-12 4,34E-09 2,30E-09 [kg SO2-Equiv.] 3,01E-02 5,61E-03 5,21E-04 1,35E-03 [kg PO43 Equiv.] 5,36E-03 6,94E-04 5,17E-05 8,29E-05 [kg Ethen Equiv.] 1,36E-02 -6,83E-05 7,07E-05 9,17E-05 [kg Sb Equiv.] 6,29E-05 1,28E-08 1,94E-07 6,36E-08	Unit A1-3 A4 A5 B2 C1 [kg CO2-Equiv.] 1,52E+01 6,11E-01 7,09E-01 3,22E-01 1,70E-02 [kg CFC11-Equiv.] 4,89E-08 5,39E-12 4,34E-09 2,30E-09 4,31E-09 [kg SO2-Equiv.] 3,01E-02 5,61E-03 5,21E-04 1,35E-03 1,16E-04 [kg PO43 Equiv.] 5,36E-03 6,94E-04 5,17E-05 8,29E-05 4,21E-06 [kg Ethen Equiv.] 1,36E-02 -6,83E-05 7,07E-05 9,17E-05 5,96E-06 [kg Sb Equiv.] 6,29E-05 1,28E-08 1,94E-07 6,36E-08 1,17E-09	Unit A1-3 A4 A5 B2 C1 C2 [kg CO2-Equiv.] 1,52E+01 6,11E-01 7,09E-01 3,22E-01 1,70E-02 1,74E-01 [kg CFC11-Equiv.] 4,89E-08 5,39E-12 4,34E-09 2,30E-09 4,31E-09 3,63E-12 [kg SO2-Equiv.] 3,01E-02 5,61E-03 5,21E-04 1,35E-03 1,16E-04 8,74E-04 [kg PO43 Equiv.] 5,36E-03 6,94E-04 5,17E-05 8,29E-05 4,21E-06 2,10E-04 [kg Ethen Equiv.] 1,36E-02 -6,83E-05 7,07E-05 9,17E-05 5,96E-06 9,32E-05 [kg Sb Equiv.] 6,29E-05 1,28E-08 1,94E-07 6,36E-08 1,17E-09 8,01E-09	Unit A1-3 A4 A5 B2 C1 C2 C3 [kg CO2-Equiv.] 1,52E+01 6,11E-01 7,09E-01 3,22E-01 1,70E-02 1,74E-01 9,10E+00 [kg CFC11-Equiv.] 4,89E-08 5,39E-12 4,34E-09 2,30E-09 4,31E-09 3,63E-12 2,33E-07 [kg SO2-Equiv.] 3,01E-02 5,61E-03 5,21E-04 1,35E-03 1,16E-04 8,74E-04 6,45E-03 [kg PO43 Equiv.] 5,36E-03 6,94E-04 5,17E-05 8,29E-05 4,21E-06 2,10E-04 2,43E-04 [kg Ethen Equiv.] 1,36E-02 -6,83E-05 7,07E-05 9,17E-05 5,96E-06 9,32E-05 3,68E-04 [kg Sb Equiv.] 6,29E-05 1,28E-08 1,94E-07 6,36E-08 1,17E-09 8,01E-09 8,26E-06	Unit A1-3 A4 A5 B2 C1 C2 C3 C4 [kg CO2-Equiv.] 1,52E+01 6,11E-01 7,09E-01 3,22E-01 1,70E-02 1,74E-01 9,10E+00 2,65E-01 [kg CFC11-Equiv.] 4,89E-08 5,39E-12 4,34E-09 2,30E-09 4,31E-09 3,63E-12 2,33E-07 4,36E-09 [kg SO2-Equiv.] 3,01E-02 5,61E-03 5,21E-04 1,35E-03 1,16E-04 8,74E-04 6,45E-03 1,23E-04 [kg PO43 Equiv.] 5,36E-03 6,94E-04 5,17E-05 8,29E-05 4,21E-06 2,10E-04 2,43E-04 2,49E-05 [kg Ethen Equiv.] 1,36E-02 -6,83E-05 7,07E-05 9,17E-05 5,96E-06 9,32E-05 3,68E-04 7,12E-05 [kg Sb Equiv.] 6,29E-05 1,28E-08 1,94E-07 6,36E-08 1,17E-09 8,01E-09 8,26E-06 -1,83E-09

GWP = Global warming potential; ODP = Depletion potential of the stratospheric ozone layer; AP = Acidification potential of land and water; EP = Eutrophication potential; POCP = Formation potential of tropospheric ozone photochemical oxidants; ADPE = Abiotic depletion potential for non-fossil resources; ADPF = Abiotic depletion potential for fossil resources

Table 10: Results of the LCA – Resource use for Allura Flex (one year)

		Manufacturing	Insta	llation	Use (1yr)		End o	f Life		Credits
Parameter	Unit	A1-3	A4	A5	B2	C1	C2	C3	C4	D
PERE	[MJ]	-	-	-	-	-		-	-	-
PERM	[MJ]	-	-	-	-	-	-	-	-	-
PERT	[MJ]	2.91E+01	1.34E-01	7.52E-02	7.88E-01	2.55E-02	1.41E-01	-5.45E-01	-3.38E-02	-2.59E-01
PENRE	[MJ]	-	-	-	-	-		-	-	-
PENRM	[MJ]	-	-	-	-	-	-	-	-	-
PENRT	[MJ]	3.19E+02	5.20E+00	3.23E+00	5.84E+00	3.30E-01	2.38E+00	-4.85E+00	2.67E-01	-3.35E+00
SM	[kg]	4.79E-01	-	-	-	-	•	-		-
RSF	[MJ]	5.98E-03	3.20E-05	1.79E-04	9.54E-05	0.00E+00	1.77E-05	-4.46E-04	-7.95E-06	-4.77E-05
NRSF	[MJ]	6.26E-02	3.36E-04	1.87E-03	9.99E-04	0.00E+00	1.85E-04	-4.67E-03	-8.32E-05	-5.00E-04
FW	[kg]	5.38E+01	1.84E-01	1.30E+00	5.28E+00	-7.97E-02	1.36E-01	-6.77E+00	-9.44E-01	-7.24E-01

= Total use of renewable primary energy resources; PENRE = Use of non-renewable primary energy resources used as raw materials; PENR = Use of non-renewable primary energy resources used as raw materials; PENRM = Use of non-renewable primary energy resources used as raw materials; PENRM = Use of non-renewable primary energy resources used as raw materials; PENRM = Use of non-renewable primary energy resources; SM = Use of secondary materials; PENRT = Total use of non-renewable primary energy resources; SM = Use of secondary materials; PENRT = Use of renewable secondary fuels; NRSF = Use of non-renewable secondary fuels; PENRT = Use of non-renewable primary energy resources; SM = Use of secondary materials; PENRT = Use of non-renewable primary energy resources.

Table 11: Results of the LCA – Output flows and Waste categories for Allura Flex (one year)

		Manufacturing	Transport	Installation	Use (1yr)		End	d of Life/cred	its	
Parameter	Unit	A1-3	A4	A5	B2	C1	C2	C3	C4	D
HWD	[kg]	5.58E-03	0.00E+00	3.70E-03	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
NHWD	[kg]	2.26E+01	1.61E-02	2.18E-01	1.12E+00	6.04E-02	1.47E-02	3.53E+00	2.54E-02	3.52E-01
RWD	[kg]	7.14E-03	7.07E-06	7.59E-05	7.12E-04	5.41E-05	3.42E-06	8.44E-04	3.74E-05	2.28E-04
CRU	[kg]	-	-	-	-	-		-		-
MFR	[kg]	_	-	-	-	-	-	-	-	-
MER	[kg]	_	-	-	-	-	-	5.03E+00	-	-
EE Power	[MJ]	_	-	2.45E-01	-	-	-	4.13E+00	-	-
EE Thermal energy	[MJ]	IWD - Non bezerdous wests	-	4.57E-01	-	-	-	3.31E+01	-	_

HWD = Hazardous waste disposed; NHWD = Non-hazardous waste disposed; RWD = Radioactive waste disposed; CRU = Components for re-use; MFR = Materials for recycling; MER = Materials for energy recovery; EE = Exported energy per energy carrier

Interpretation

The interpretation of the environmental impacts calculated according to EN 15804 are similar to the interpretation according to ISO 14025 on page 12. A more detailed interpretation is published in the appendix.

According to ISO 14025 & EN 15804

References

GABI 6 2012 PE INTERNATIONAL AG; GaBi 6: Software-System and Database for Life Cycle

Engineering. Copyright, TM. Stuttgart, Echterdingen, 1992-2012.

GABI 6 2012D GaBi 6: Documentation of GaBi 6: Software-System and Database for Life Cycle

Engineering. Copyright, TM. Stuttgart, Echterdingen, 1992-2012. http://documentation.gabi-

software.com

NSF International Product Category Rule for Environmental Product Declarations

May 22, 2012 Flooring: Carpet, Resilient, Laminate, Ceramic, Wood

UL Environment's Program Operator Rules
ERFMI 2008

UL Environment's Program Operator Rules
Final report: LCA. Environmental Informatio

Final report: LCA, Environmental Information Sheet and Eco design Model of Resilient

Flooring by order of ERFMI, PE International, 2008

IBU 2011 PCR - Part A: Calculation rules for the Life Cycle Assessment and Requirements on the

Background Report, Institut Bauen und Umwelt e.V.

PE 2012 Description of Selected Impact Categories, PE International AG, 2012

European Commission - Joint Research Centre - Institute for Environment and

Sustainability: International Reference Life Cycle Data System (ILCD) Handbook - General guide for Life Cycle Assessment - Detailed guidance. First edition March 2010. EUR 24708

EN. Luxembourg. Publications Office of the European Union; 2010

STANDARDS AND LAWS

Assessment - Detailed

quidance

ILCD Handbook: General guide for Life Cycle

DIN EN ISO 14044 Environmental management - Life cycle assessment - Requirements and guidelines (ISO

14044:2006); German and English version EN ISO 14044

ISO 14025 2006 DIN EN ISO 14025: Environmental labels and declarations — Type III environmental

declarations — Principles and procedures

ISO 14040 2006 Environmental management - Life cycle assessment - Principles and framework (ISO

14040); German and English version EN ISO 14040

CEN/TR 15941 Sustainability of construction works - Environmental product declarations - Methodology for

selection and use of generic data; German version CEN/TR 15941

EN 15804: Sustainability of construction works — Environmental Product Declarations —

Core rules for the product category of construction products

EN-ISO 11638 Resilient floor coverings – Heterogeneous polyvinyl chloride flooring on foam - Specification

CPR REGULATION (EU) No 305/2011 OF THE EUROPEAN PARLIAMENT AND OF THE

COUNCIL of 9 March 2011 laying down harmonized conditions for the marketing of

construction products and repealing Council Directive 89/106/EEC

EN-ISO 10874 Resilient, textile and laminate floor coverings - Classification

Life Cycle Assessment Allura Flex

LCA study conducted by:
Forbo Flooring
Industrieweg 12
1566 JP Assendelft
The Netherlands

Authors:

Floris Zeitler, Forbo

Industrieweg 12 Forbo Flooring BV

1566 JP Assendelft, The Netherlands Tel. +31 (0) 75 6477477 Fax +31 (0) 75 6477707 E-mail floris.zeitler@forbo.com Internet www.forbo-flooring.com

Nomenclature

Abbreviation Explanation

ADP Abiotic Depletion Potential ΑP **Acidification Potential**

Benefits and Loads Beyond the System Boundary BLBSB

CRU Components for re-use

Exported energy per energy carrier EE

ΕP **Eutrophication Potential**

EPD **Environmental Product Declaration**

FW Use of net fresh water **GWP** Global Warming Potential **HWD** Hazardous waste disposed Life Cycle Assessment LCA Materials for energy recovery MER Materials for recycling MFR

NRSF

Use of non-renewable secondary fuels ODP Ozone Layer Depletion Potential

PENRE Use of non-renewable primary energy excluding non-renewable primary energy resources used as raw

PENRM Use of non-renewable primary energy resources used as raw materials

PENRT Total use of non-renewable primary energy resources

PERE Use of renewable primary energy excluding renewable primary energy resources used as raw materials

PERM Use of renewable primary energy resources used as raw materials

Total use of renewable primary energy resources **PERT**

PCR **Product Category Rules**

POCP Photochemical Ozone Creation Potential

Use of renewable secondary fuels RSF

RSL Reference Service Life **RWD** Radioactive waste disposed Use of secondary material SM

General

The present LCA study of the company Forbo Flooring, a manufacturer of resilient floor coverings, has been performed by Forbo Flooring under support of PE International and has been conducted according to the requirements of the European Standard EN15804 following the document "Part A: Calculation Rules for the Life Cycle Assessment and Requirements on the Background Report". The LCA report was sent to verification on 06/13/13

Scope

This document is the LCA report for the "Environmental Product Declaration" (EPD) of "Allura Flex".

The provision of an LCA report is required for each EPD of the EPD-program holder (UL Environment). This document shows how the calculation rules were applied and describes additional LCA information on the Life Cycle Assessment in accordance with the requirements of ISO 14040 series.

Content, structure and accessibility of the LCA report

The LCA report provides a systematic and comprehensive summary of the project documentation supporting the verification of an EPD.

The report documents the information on which the Life Cycle Assessment is based, while also ensuring the additional information contained within the EPD complies with the requirements of ISO 14040 series.

The LCA report contains all of the data and information of importance for the details published in the EPD. Care is been given to all explanations as to how the data and information declared in the EPD arises from the Life Cycle Assessment. The verification of the EPD is aligned towards the structure of the rule document based on ISO 14025 and EN15804.

Goal of the study

The reason for performing this LCA study is to publish an EPD based on EN 15804 and ISO 14025.

This study contains the calculation and interpretation of the LCA results for Allura Flex complying with EN-ISO 11638 : Resilient floor coverings – Heterogeneous polyvinyl chloride flooring on foam - Specification.

Manufactured by Forbo-Novilon B.V. De Holwert 12 7741 KC Coevorden The Netherlands

The following life cycle stages were considered:

- Product stage
- Transport stage
- Installation stage
- Use stage
- End-of-life stage
- Benefits and loads beyond the product system boundary

The main purpose of EPD is for use in business-to-business communication. As all EPD are publicly available on the website of UL Environment and therefore are accessible to the end consumer they can also be used in business-to-consumer communication.

The intended use of the EPD is to communicate environmentally related information and LCA results to support the assessment of the sustainable use of resources and of the impact of construction works on the environment

Scope of the study

Declared / functional unit

The declaration refers to the declared/functional unit of 1m² installed flooring product.

Declaration of construction products classes

The LCA report refers to a manufacturer declaration of type 1a): Declaration of a specific product from a manufacturer's plant.

Allura Flex is produced at the following manufacturing site:

Forbo-Novilon B.V.

De Holwert 12

7741 KC Coevorden

The Netherlands

Product Definition

Product Classification and description

This declaration covers a broad range of designs and colors. Allura Flex from Forbo Flooring is a resilient floor covering complying with all the requirements of EN-ISO 11638: Resilient floor coverings – Heterogeneous polyvinyl chloride flooring on foam - Specification. The key raw materials include PVC, plasticizer, mineral filler, stabilizers and glass fiber.

Allura Flex is produced by Forbo Flooring and is sold worldwide.

Allura Flex is a range of loose lay vinyl floor tiles of 5.0mm nominal thickness with a 1.00mm wear layer.

Allura Flex consists of 6 layers as illustrated in the following diagram.

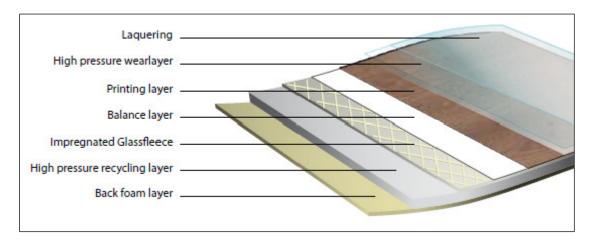
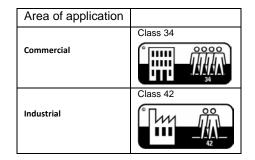



Figure 1: Typical construction

- 1. **Lacquer surface:** This PU lacquer coating for easy cleaning & maintenance gives enhanced protection against scuffing, scratching, dirt pick up and staining.
- 2. **Wear layer:** The 1.00mm transparent wear layer meets the requirement for Type 1 wear layer according to EN-ISO10582. This topcoat layer is generally transparent but for certain ranges will be pigmented and may also contain design enhancing decorative PVC chips or spheres.
- 3. **Printed layer:** The decorative design is printed, using environmentally friendly water-based inks, on to a white PVC plastisol coating (balance layer)
- 4. **Intermediate layer:** Non-woven glass fleece that is impregnated with a highly filled PVC plastisol to give the product strength & excellent dimensional stability.
- 5. **Recycling layer**: Calendered layer containing a minimum of 50% recycled production waste.
- 6. Foam Backing: a mechanically foamed PVC backing which contributes to loose lay properties.

Range of application

Allura Flex is classified in accordance with EN-ISO 11638 to be installed in the following use areas defined in EN-ISO 10874:

Product Standard

The products considered in this EPD have the following technical specifications:

 Meets or exceeds all technical requirements in EN-ISO 11638 Resilient floor coverings – Heterogeneous polyvinyl chloride flooring on foam - Specification

Project vinyl meets the requirements of EN 14041

EN 13501-1 Reaction to fire $B_{fl} - s1$ EN 13893 Slip resistance DS: \geq 0,30 EN 1815 Body voltage < 2 kV EN ISO10456 Thermal conductivity 0,25 W/mK

Accreditation

- ISO 9001 Quality Management System
- o ISO 14001 Environmental Management System
- o AgBB requirements
- o CHPS section 01350

Delivery status

Characteristics	Nominal Value	Unit
Product thickness	5.00	mm
Product Weight	6.55	kg/m²
Tile size	Planks – 100 x 20	cm
	Tiles – 50 x 50	

Material Content

Component	Material	Availability	Mass %	Origin of raw material
Binder	PVC	Nonrenewable – limited	36	Europe
Billidel	DINP & Dibenzoates	Nonrenewable - limited	16.5	Luiope
				Europe
Filler	Dolomite	Abundant mineral	25	Europe
Stabilizers and process additives	Epoxidized esters & proprietary mixtures & lubricants	1.2% natural oils, others nonrenewable - limited	3.5	Europe
Carrier	Glass fiber tissue	Nonrenewable - limited	< 1.0	Netherlands/Germany
Pigments	Titanium Dioxide	Nonrenewable - limited	<0.2	Europe
Finish	Various chemicals	Nonrenewable - limited	<0.2	Europe
Recycle	Post production waste		18	

Production of Main Materials

PVC: Polymer which is produced by the polymerisation of vinyl chloride monomer.

Plasticizers: Plasticizer is obtained by esterification of an alcohol and acid. Plasticizer is added to increase the flexibility, durability and longevity of the floor covering.

Stabilizer Ba/Zn: Mixed metal stabilizer made from Barium and Zinc stearate. It is used to avoid PVC degradation during processing at relative high temperature.

Dolomite: An abundant mineral mined in northern Norway.

Glass fibre tissue: Glass fibres are mixed with a binder to produce a glass fleece which is used as a substrate for floor coverings and imparts excellent dimensional stability to the finished product.

Titanium dioxide: A white pigment produced from the mineral rutile, a naturally occurring form of titanium dioxide. The production of the pigment is a large-scale chemical process

Recycle: Mixture of process wastes from the manufacture of various PVC floorcoverings.

Production of the Floor Covering

The production of Allura Flex includes the following processes –

- Preparation of PVC plastisols (mixture of PVC, plasticizer and additives, may also contain filler and pigments)
- Impregnation of the glass fleece with a highly filled plastisol followed by the application of a thin white plastisol coating.
- Rotogravure printing, using water based inks, to produce wood, stone or abstract designs.
- Application of calendered PVC topcoat and PU lacquer.
- An intermediate backing layer is applied to the underside of the impregnated glass fleece. This plasticized PVC layer, which is applied by a calender, contains a minimum of 50% of reused production waste.
- The final backing layer, a mechanically foamed PVC plastisol, is then applied to the calendered layer. Both the backing layer and the wear layer are then mechanically embossed to enhance the loose lay properties of the backing and to enhance the visual appearance of the surface, respectively.
- The finished product is then trimmed, inspected and cut into tiles of a specified size. Trimmings & rejected product are recycled back into the calendered backing layer.

Health, Safety and Environmental Aspects during Production

o ISO 14001 Environmental Management System

Production Waste

Rejected material and the cuttings of the trimming stage are being reused in the manufacturing process. Packaging materials are being collected separately and externally recycled.

Delivery and Installation of the Floor Covering

Delivery

A worldwide distribution by truck and container ship is considered. On average every square meter of Allura Flex is transported as follows:

0	Transport distance 40 t truck	624 km
0	Transport distance 7.5t truck (Fine distribution)	279 km
0	Capacity utilization trucks (including empty runs)	85 %
0	Transport distance Ocean ship	1520 km
0	Capacity utilization Ocean ship	48%

Installation

Because of the specific techniques used during the installation of Allura Flex approximately 4.5% of the material is cut off as installation waste. For installation of Flex tiles on the floor a scenario has been modeled assuming 0.05 kg/m² of adhesive is applied to the sub-floor. Waste during the installation process may be recycled through the manufacturer's facility or disposed of via landfill or incineration.

Health, Safety and Environmental Aspects during Installation

Forbo flooring recommends the use of (low) zero emission tackifiers for installation of Allura Flex.

Waste

Waste during the installation process may be recycled as floor covering through the manufacturers' facilities or disposed of via land fill or thermally recycled in a waste incineration plant.

Packaging

Cardboard boxes and wooden pallets can be collected separately and should be used in a local recycling / reuse processes. In the calculation model 100% incineration is taken into account for which there is a credit received.

Use stage

The service lifetime of a floor covering for a certain application on a floor is too widespread to give one common number. For this EPD model the reference service lifetime (RSL) is set to one year. This means that all impacts for the use phase are based on the cleaning and maintenance model for one year. Depending on the area of use, the technical lifetime advised by the manufacturer and the estimated time on the floor by the customer, the service lifetime can be determined. The use phase impacts should be calculated with the foreseen service life to arrive at the total environmental impact.

Cleaning and Maintenance

Level of use	Cleaning Process	Cleaning Frequency	Consumption of energy and resources
Commercial/Residential/Industrial	Vacuuming	Twice a week	Electricity
	Damp mopping	Once a week	Hot water
			Neutral detergent

For the calculations the following cleaning regime is considered:

- Dry cleaning with a 1.5 kW vacuum cleaner for 0.21 min/m², twice a week. This equates to 0.55 kWh/m²*year.
- Once a week wet cleaning with 0.062 l/m² water and 0.0008 kg/m² detergent. This result in the use of 3.224 l/m²*year water and 0.04 kg/m²*year detergent. The wet cleaning takes place without power machine usage. Waste water treatment of the arising waste water from cleaning is considered.

The cleaning regime that is recommended in practice will be highly dependent on the use of the premises where the floor covering is installed. In high traffic areas more frequent cleaning will be needed compared to areas where there is low traffic. The use of an entrance mat of at least four steps will reduce the cleaning frequency.

The cleaning regime used in the calculations is suitable for high traffic areas and is a worst case scenario.

Prevention of Structural Damage

All newly laid floor covering should be covered and protected with a suitable non-staining protective covering if other building activities are still in progress. Use protective feet on chairs and tables to reduce scratching. Castor wheels should be suitable for resilient floor coverings

Health Aspects during Usage

Allura Flexs are complying with:

- o AgBB requirements
- o CHPS section 01350

End of Life

The deconstruction of installed Allura Flexs from the floor can be done manually and, therefore, no electrical energy is required for this process.

Life Cycle Assessment

A full Life Cycle Assessment has bee carried out according to ISO 14040 and ISO 14044.

The following Life Cycle Stages are assessed:

- Production Stage (Raw material acquisition, transportation to Manufacturing and Manufacturing)
- Transport Gate to User
- o Installation Stage
- o Use Stage
- End of Life Stage

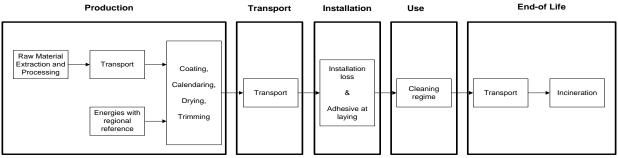


Figure 2: Flow chart of the Life Cycle Assessment

Description of the declared Functional Unit

The functional unit is one square meter of installed product and the use stage is considered for one year of service life.

Cut off Criteria

The cut-off criteria shall be 1% of renewable and non-renewable primary energy usage and 1% of the total mass of the unit process. The total neglected input flows per module shall be a maximum of 5% of energy usage and mass.

In practice, in this assessment, all data from the production data acquisition are considered, i.e. all raw materials used as per formulation, use of water, electricity and other fuels, the required packaging materials, and all direct production waste. Transport data on all considered inputs and output material are also considered.

LCA Data

As a general rule, specific data derived from specific production processes or average data derived from specific production processes have been used as the first choice as a basis for calculating an EPD.

For life cycle modeling of the considered products, the GaBi 6 Software System for Life Cycle Engineering, developed by PE INTERNATIONAL AG, has been used. All relevant LCA datasets are taken from the GaBi 6 software database. The datasets from the database GaBi are documented in the online documentation. To ensure comparability of results in the LCA, the basic data of GaBi database were used for energy, transportation and auxiliary materials.

Data Quality

The requirements for data quality and LCA data correspond to the specifications of the PCR.

Foreground data are based on 1 year averaged data (year 2012). The reference ages of LCA datasets vary but are given in the table in the Appendix. The time period over which inputs to and outputs from the system is accounted for is 100 years from the year for which the data set is deemed representative. The technological LCA of the collected data reflects the physical reality of the declared product. The datasets are complete, conform to the system boundaries and the criteria for the exclusion of inputs and outputs and are geographical representative for the supply chain of Forbo flooring.

For life cycle modeling of the considered products the GaBi 6 Software System for Life Cycle Engineering, developed by PE INTERNATIONAL AG, is used. All relevant LCA datasets are taken from the GaBi 6 software database. The last revision of the used data sets took place within the last 10 years.

Table 1: LCA datasets used in the LCA model

Benzoates Europe 2012 ESBO Europe 2006 Polyvinyl chloride granulate Germany 2012 Di-Isononyl Phthalate (DINP) Germany 2010 Titanium dioxide Europe 2010 Barium-Zinc Stearate Europe 2010 Fat Acid Esters Europe 2007 Dolomite Germany 2006 PVC recycling Internal 2006 Diphenylmethane-4.4 di-isocyanate (MDI) Europe 2005 Acrylic resin Germany 2010 Glass fibers Germany 2011 Organic pigments Germany 2011 Organic pigments Germany 2007 Water (desalinated; deionised) Germany 2010 Detergent (ammonia based) Germany 2006 Adhesive for resilient flooring Germany 2010 Waste incineration of Allura Flex Europe 2006 Electricity from Hydro power The Netherlands 2009 Power grid mix Europe <th>Data set</th> <th>Region</th> <th>Reference year</th>	Data set	Region	Reference year
Polyvinyl chloride granulate Di-Isononyl Phthalate (DINP) Germany 2010 Titanium dioxide Europe 2010 Barium-Zinc Stearate Europe 2010 Fat Acid Esters Europe 2007 Dolomite Germany 2006 PVC recycling Internal 2006 Diphenylmethane-4.4 di-isocyanate (MDI) Europe 2005 Acrylic resin Germany 2010 Glass fibers Germany 2010 Organic pigments Germany 2011 Organic pigments Germany 2010 Detergent (ammonia based) Adhesive for resilient flooring Waste incineration of Allura Flex Europe 2006 Electricity from Hydro power The Netherlands Purple 2009 Thermal energy from natural gas The Netherlands 2009 Europe 2009 Thermal energy from natural gas Europe 2009	Benzoates	Europe	2012
Di-Isononyl Phthalate (DINP) Germany 2010 Titanium dioxide Europe 2010 Barium-Zinc Stearate Europe 2010 Fat Acid Esters Europe 2007 Dolomite Germany 2006 PVC recycling Internal 2006 Diphenylmethane-4.4 di-isocyanate (MDI) Europe 2005 Acrylic resin Germany 2010 Glass fibers Germany 2011 Organic pigments Germany 2007 Water (desalinated; deionised) Germany 2007 Water (ammonia based) Germany 2010 Detergent (ammonia based) Germany 2010 Adhesive for resilient flooring Germany 2010 Waste incineration of Allura Flex Europe 2006 Electricity from Hydro power The Netherlands 2009 Thermal energy from natural gas The Netherlands 2009 Thermal energy from natural gas Europe 2009	ESBO	Europe	2006
Titanium dioxide Europe 2010 Barium-Zinc Stearate Europe 2010 Fat Acid Esters Europe 2007 Dolomite Germany 2006 PVC recycling Internal 2006 Diphenylmethane-4.4 di-isocyanate (MDI) Europe 2005 Acrylic resin Germany 2010 Glass fibers Germany 2011 Organic pigments Germany 2007 Water (desalinated; deionised) Germany 2010 Detergent (ammonia based) Germany 2010 Adhesive for resilient flooring Germany 2010 Waste incineration of Allura Flex Europe 2006 Electricity from Hydro power The Netherlands 2009 Power grid mix Europe 2009 Thermal energy from natural gas The Netherlands 2009 Thermal energy from natural gas Europe 2009	Polyvinyl chloride granulate	Germany	2012
Barium-Zinc Stearate Europe 2010 Fat Acid Esters Europe 2007 Dolomite Germany 2006 PVC recycling Internal 2006 Diphenylmethane-4.4 di-isocyanate (MDI) Europe 2005 Acrylic resin Germany 2010 Glass fibers Germany 2011 Organic pigments Germany 2007 Water (desalinated; deionised) Germany 2010 Detergent (ammonia based) Germany 2006 Adhesive for resilient flooring Germany 2010 Waste incineration of Allura Flex Europe 2006 Electricity from Hydro power The Netherlands 2009 Power grid mix Europe 2009 Thermal energy from natural gas The Netherlands 2009 Thermal energy from natural gas Europe 2009	Di-Isononyl Phthalate (DINP)	Germany	2010
Fat Acid EstersEurope2007DolomiteGermany2006PVC recyclingInternal2006Diphenylmethane-4.4 di-isocyanate (MDI)Europe2005Acrylic resinGermany2010Glass fibersGermany2011Organic pigmentsGermany2007Water (desalinated; deionised)Germany2010Detergent (ammonia based)Germany2006Adhesive for resilient flooringGermany2010Waste incineration of Allura FlexEurope2006Electricity from Hydro powerThe Netherlands2009Power grid mixEurope2009Thermal energy from natural gasThe Netherlands2009Thermal energy from natural gasThe Netherlands2009	Titanium dioxide	Europe	2010
DolomiteGermany2006PVC recyclingInternal2006Diphenylmethane-4.4 di-isocyanate (MDI)Europe2005Acrylic resinGermany2010Glass fibersGermany2011Organic pigmentsGermany2007Water (desalinated; deionised)Germany2010Detergent (ammonia based)Germany2006Adhesive for resilient flooringGermany2010Waste incineration of Allura FlexEurope2006Electricity from Hydro powerThe Netherlands2009Power grid mixEurope2009Thermal energy from natural gasThe Netherlands2009Thermal energy from natural gasEurope2009	Barium-Zinc Stearate	Europe	2010
PVC recyclingInternal2006Diphenylmethane-4.4 di-isocyanate (MDI)Europe2005Acrylic resinGermany2010Glass fibersGermany2011Organic pigmentsGermany2007Water (desalinated; deionised)Germany2010Detergent (ammonia based)Germany2006Adhesive for resilient flooringGermany2010Waste incineration of Allura FlexEurope2006Electricity from Hydro powerThe Netherlands2009Power grid mixEurope2009Thermal energy from natural gasThe Netherlands2009Thermal energy from natural gasEurope2009	Fat Acid Esters	Europe	2007
Diphenylmethane-4.4 di-isocyanate (MDI)Europe2005Acrylic resinGermany2010Glass fibersGermany2011Organic pigmentsGermany2007Water (desalinated; deionised)Germany2010Detergent (ammonia based)Germany2006Adhesive for resilient flooringGermany2010Waste incineration of Allura FlexEurope2006Electricity from Hydro powerThe Netherlands2009Power grid mixEurope2009Thermal energy from natural gasThe Netherlands2009Thermal energy from natural gasEurope2009	Dolomite	Germany	2006
Acrylic resinGermany2010Glass fibersGermany2011Organic pigmentsGermany2007Water (desalinated; deionised)Germany2010Detergent (ammonia based)Germany2006Adhesive for resilient flooringGermany2010Waste incineration of Allura FlexEurope2006Electricity from Hydro powerThe Netherlands2009Power grid mixEurope2009Thermal energy from natural gasThe Netherlands2009Thermal energy from natural gasEurope2009	PVC recycling	Internal	2006
Glass fibersGermany2011Organic pigmentsGermany2007Water (desalinated; deionised)Germany2010Detergent (ammonia based)Germany2006Adhesive for resilient flooringGermany2010Waste incineration of Allura FlexEurope2006Electricity from Hydro powerThe Netherlands2009Power grid mixEurope2009Thermal energy from natural gasThe Netherlands2009Thermal energy from natural gasEurope2009	Diphenylmethane-4.4 di-isocyanate (MDI)	Europe	2005
Organic pigmentsGermany2007Water (desalinated; deionised)Germany2010Detergent (ammonia based)Germany2006Adhesive for resilient flooringGermany2010Waste incineration of Allura FlexEurope2006Electricity from Hydro powerThe Netherlands2009Power grid mixEurope2009Thermal energy from natural gasThe Netherlands2009Thermal energy from natural gasEurope2009	Acrylic resin	Germany	2010
Water (desalinated; deionised)Germany2010Detergent (ammonia based)Germany2006Adhesive for resilient flooringGermany2010Waste incineration of Allura FlexEurope2006Electricity from Hydro powerThe Netherlands2009Power grid mixEurope2009Thermal energy from natural gasThe Netherlands2009Thermal energy from natural gasEurope2009	Glass fibers	Germany	2011
Detergent (ammonia based)Germany2006Adhesive for resilient flooringGermany2010Waste incineration of Allura FlexEurope2006Electricity from Hydro powerThe Netherlands2009Power grid mixEurope2009Thermal energy from natural gasThe Netherlands2009Thermal energy from natural gasEurope2009	Organic pigments	Germany	2007
Adhesive for resilient flooringGermany2010Waste incineration of Allura FlexEurope2006Electricity from Hydro powerThe Netherlands2009Power grid mixEurope2009Thermal energy from natural gasThe Netherlands2009Thermal energy from natural gasEurope2009	Water (desalinated; deionised)	Germany	2010
Waste incineration of Allura FlexEurope2006Electricity from Hydro powerThe Netherlands2009Power grid mixEurope2009Thermal energy from natural gasThe Netherlands2009Thermal energy from natural gasEurope2009	Detergent (ammonia based)	Germany	2006
Electricity from Hydro powerThe Netherlands2009Power grid mixEurope2009Thermal energy from natural gasThe Netherlands2009Thermal energy from natural gasEurope2009	Adhesive for resilient flooring	Germany	2010
Power grid mixEurope2009Thermal energy from natural gasThe Netherlands2009Thermal energy from natural gasEurope2009	Waste incineration of Allura Flex	Europe	2006
Thermal energy from natural gasThe Netherlands2009Thermal energy from natural gasEurope2009	Electricity from Hydro power	The Netherlands	2009
Thermal energy from natural gas Europe 2009		Europe	2009
o, o	Thermal energy from natural gas	The Netherlands	2009
Trucks Global 2010	Thermal energy from natural gas	Europe	2009
	Trucks	Global	2010

Data set	Region	Reference year
Municipal waste water treatment (Sludge incineration).	Europe	2011
Container ship	Global	2010
Diesel mix at refinery	Europe	2009
Heavy fuel oil at refinery (1.0wt.% S)	Europe	2009
Corrugated board	Europe	2002
Wooden pallets	Germany	1998

The documentation of the LCA data sets can be taken from the GaBi documentation.

System Boundaries

<u>Production Stage</u> includes provision of all materials, products and energy, packaging processing and its transport, as well as waste processing up to the end-of waste state or disposal of final residues during the product stage.

<u>Transport and Installation Stage</u> includes provision of all materials, products and energy, as well as waste processing up to the end-of-waste state or disposal of final residues during the construction stage. These information modules also include all impacts and aspects related to any losses during this construction stage (i.e. production, transport, and waste processing and disposal of the lost products and materials). For the transportation a worldwide distribution is considered. <u>Use Stage</u> includes provision and transport of all materials, products and related energy and water use, as well as waste processing up to the end-of-waste state or disposal of final residues during this part of the use stage. These information modules also include all impacts and aspects related to the losses during this part of the use stage (i.e. production, transport, and waste processing and disposal of the lost products and materials).

<u>End of Life Stage</u> includes provision and all transports, provision of all materials, products and related energy and water use. It also includes any declared benefits and loads from net flows leaving the product system that have not been allocated as co-products and that have passed the end-of-waste state in the form of reuse, recovery and/or recycling potentials.

Power mix

The selection of LCA data for the electricity generation is in line with the PCR.

The products are manufactured in Coevorden, the Netherlands. The GaBi 6 Hydro power datasets has therefore been used (reference year 2009). The energy supplier is providing Forbo with a certificate every year.

CO₂-Certificates

No CO₂-certificates are considered in this study.

Allocations

In the present study some allocations have been made. Detailed explanations can be found in the chapters below.

Co-product allocation

No co-product allocation occurs in the product system.

Allocation of multi-Input processes

The Production and End of Life stage include incineration plants. In these processes different products are treated together within a process. The allocation procedures followed in these cases are based on a physical classification of the mass flows or calorific values.

Credits from energy substitution are allocated to the production stage, because the gained energy from energy substitution is lower than the energy input in this stage. The same quality of energy is considered.

Allocation procedure of reuse, recycling and recovery

The installation waste and end of life waste can be fed into incineration processes. Incineration processes include cogeneration processes which give thermal and power energy as outputs. It is assumed that this recovered energy offsets that produced by the European average grid mix and thermal energy generation from natural gas.

Description of the allocation processes in the LCA report

The description of allocation rules in of this LCA report meets the requirements of the PCR.

Description of the unit processes in the LCA report

The modeling of the unit processes reported for the LCA are documented in a transparent way, respecting

the confidentiality of the data present in the LCA report.

In the following tables the type and amount of the different input and output flows are listed for 1m² produced flooring; installed flooring includes the material loss during installation (4.5%):

Table 2: Composition of Allura Flex

Process data	Unit	Allura Flex
PVC	kg/m2	2.353
DINP & Dibenzoates	kg/m2	1.078
Dolomite	kg/m2	1.634
Epoxidized esters, proprietary mixtures & lubricants	kg/m2	0.229
Glass fibers	kg/m2	< 0.065
Titanium dioxide	kg/m2	< 0.013
Various chemicals	kg/m2	< 0.013
Post production waste	kg/m2	1.176

Table 3: Production related inputs/outputs

Process data	Unit	Allura Flex
INPUTS		
Allura Flex	kg	8.184
Electricity	MJ	9.57
Thermal energy from natural gas	MJ	17.22
Water	kg	1.45
OUTPUTS		
Allura Flex	kg	6.536
Waste	kg	1.648
Water	kg	0.64

Table 4: Packaging requirements (per m² manufactured product)

Process data	Unit	Allura Flex
Wooden pallets	kg	0.113
Corrugated board	kg	0.130

Table 5: Transport distances

Process data	Unit	Road	Truck size	Ship
Dolomite	km	1300	14 - 20t gross	-
PVC granulate	km	760	weight / 11,4t	-
Benzoates	km	1800	payload capacity	-
ESBO	km	900		-
Barium-Zinc stearate	km	1100		-
Titanium dioxide	km	2100		-
DINP	km	400		-
Fat acid esters	km	300		-
PVC waste recycling	km	1		-
Glass fibers	km	110		-
Lacquer	km	180		-
Acrylic resin	km	110		-
Corrugated board	km	50		-
Wooden pallets	km	180		-
Transport to construction site :	km	903		1520
-Transport distance 40 t truck		624	34 - 40 t gross	
			weight / 27t	
			payload capacity	
-Transport distance 7.5t truck (Fine		279	7,5 t - 12t gross	
distribution)			weight / 5t payload	
			capacity	
			7,5 t - 12t gross	-
Waste transport to landfill & incineration	km	200	weight / 5t payload	
			capacity	

Table 6: Inputs/outputs from Installation

Process data	Unit	Allura Flex
INPUTS		
Allura Flex	kg	6.536
Adhesive (30% water content)	kg	0.050
- Water		
- Acrylate co-polymer		
- Styrene Butadiene co-polymer		
- Limestone flour		
- Sand		
OUTPUTS		
Installed Allura Flex	kg	6.242
Installation Waste	kg	0.294

Table 7: Inputs from use stage (per m².year of installed product)

Process data	Unit	Allura Flex
Detergent	kg/year	0.04
Electricity	kWh/year	0.55
Water	kg/year	3.224

Table 8: Disposal

Process data	Unit	Allura Flex
Post-consumer Allura Flex to landfill	%	20
Post-consumer Allura Flex to incineration	%	80

Life Cycle Inventory Analysis

In table 9 the environmental impacts for one lifecycle are presented for Allura Flex . In the table 10 the environmental impacts are presented for all the lifecycle stages.

Table 9: Results of the LCA - Environmental impacts one lifecycle (one year) - Allura Flex

Impact Category : CML 2001 – Nov. 2010	Allura Flex	Unit
Global Warming Potential (GWP 100 years)	2.77E+01	kg CO2-Equiv.
Ozone Layer Depletion Potential (ODP. steady state)	2.98E-07	kg R11-Equiv.
Acidification Potential (AP)	4.80E-02	kg SO2-Equiv.
Eutrophication Potential (EP)	6.97E-03	kg Phosphate-Equiv.
Photochem. Ozone Creation Potential (POCP)	1.55E-02	kg Ethene-Equiv.
Abiotic Depletion Potential Elements (ADPE)	7.47E-05	kg Sb-Equiv.
Abiotic Depletion Potential Fossil (ADPF)	3.64E+02	[MJ]

Table 10: Results of the LCA – Environmental impact for Allura Flex (one year)

Impact Category: CML 2001 - Nov. 2010	Unit	Production	Transport	Installation	Use (1yr)	End of Life
Global Warming Potential	kg CO2-Equiv.	1.67E+01	6.11E-01	5.11E-01	3.22E-01	9.55E+00
Ozone Layer Depletion Potential	kg R11-Equiv.	4.91E-08	5.39E-12	4.26E-09	2.30E-09	2.42E-07
Acidification Potential	kg SO2-Equiv.	3.34E-02	5.61E-03	2.50E-05	1.35E-03	7.57E-03
Eutrophication Potential	kg PSO4-Equiv.	5.69E-03	6.94E-04	1.86E-05	8.29E-05	4.82E-04
Photochem. Ozone Creation Potential	kg Ethene-Equiv.	1.49E-02	-6.83E-05	3.07E-05	9.17E-05	5.39E-04
Abiotic Depletion Elements	kg Sb-Equiv.	6.62E-05	1.28E-08	1.78E-07	6.36E-08	8.26E-06
Abiotic Depletion Fossil	MJ	3.56E+02	5.20E+00	-1.38E-01	5.78E+00	-2.96E+00

The relative contribution of each process stage to each impact category for Allura Flex is shown in figure 3.

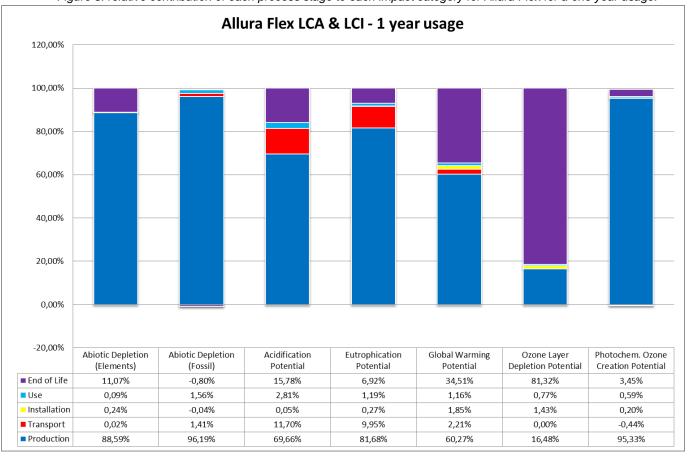


Figure 3: relative contribution of each process stage to each impact category for Allura Flex for a one year usage.

Interpretation

The interpretation of the results has been carried out considering the assumptions and limitations declared in the EPD, both methodology- and data-related for a <u>one year usage</u>.

In most of the impact categories (ADPE, ADPF, AP, EP, GWP and POCP) the production stage has the main contribution to the overall impact. The raw material supply is the key contributor with a share of 59 – 98% of the total impact of the production stage.

For the transportation stage a significant contribution comes from the categories AP and EP in which the container ship used for a worldwide distribution is the major contributor.

The installation stage has a very low impact due to the fact that Allura Flex is a loose lay product. Only GWP and ODP have a minor impact caused by the impact of disposal of the packaging and installation waste.

For the use stage the main impact categories are ADPF, AP, EP and GWP, mainly caused by the use of electricity for cleaning.

At the End of Life stage the main impact categories are AP, ADPE, GWP and ODP, this is mainly due to the fact that 80% of the waste is incinerated in these calculations.

Additional Environmental Information

To be fully transparant Forbo Flooring does not only want to declare the environmental impacts required in the PCR, but also the impacts on human health and eco-toxicity. Furthermore the outcome of the calculations according to the european Standard EN15804 are published in this section.

Toxicity

For this calculations the USEtoxTM model is used as being the globally recommended preferred model for characterization modeling of human and eco-toxic impacts in LCIA by the United Nations Environment Programme SETAC Life Cycle Initiative.

According to the "ILCD Handbook: Recommendations for Life Cycle Impact Assessment in the European context" the recommended characterization models and associated characterization factors are classified according to their quality into three levels:

- Level I (recommended and satisfactory),
- Level II (recommended but in need of some improvements)
- o Level III (recommended, but to be applied with caution).

A mixed classification sometimes is related to the application of the classified method to different types of substances. USEtoxTM is classified as Level II / III, unlike for example the CML impact categories which are classified as Level I.

Table 11: Results of the LCA – Environmental impacts one lifecycle (one year) – Allura Flex

Impact Category : USEtox	Allura Flex	Unit
Eco toxicity	2.08E+00	PAF m3.day
Human toxicity, cancer	1.59E-08	Cases
Human toxicity, non-canc.	3.75E-06	Cases

In the following table the impacts are subdivided into the lifecycle stages.

Table 12: Results of the LCA – Environmental impact for Allura Flex (one year)

Impact Category : USEtox	Unit	Production	Transport	Installation	Use (1yr)	End of Life
Eco toxicity	PAF m3.day	2.04E+00	3.18E-02	-4.93E-03	2.78E-02	-7.09E-03
Human toxicity, cancer	cases	1.55E-08	1.31E-10	-2.10E-11	2.66E-10	1.70E-11
Human toxicity, non-canc.	cases	3.67E-06	5.95E-08	-1.18E-08	5.50E-08	-2.84E-08

Interpretation

The interpretation of the results has been carried out considering the assumptions and limitations declared in the EPD, both methodology- and data-related for a <u>one year usage</u>.

In all the Toxicity categories the production stage is the main contributor to the total overall impact. The raw material supply has a share of more than 98% of the production stage, therefore the choice of raw materials can highly influence the Toxicity categories.

The Use stage has a minor impact of ± 1.5% for all three impact categories. This is mainly due to the use of electricity for the cleaning of the floor. The used cleaning regime of vacuuming twice a week is very conservative and will in practice most of the times be lower.

EN15804 results

In this section the calculations have been conducted according to the requirements of the European Standard EN 158024 following the document "Part A: Calculation Rules for the Life Cycle Assessment and Requirements on the Background Report".

Table 13: Results of the LCA – Environmental impact for Allura Flex (one year)

		Manufacturing	Instal	lation	Use (1yr)		End	of Life		Credits
Parameter	Unit	A1-3	A4	A5	B2	C1	C2	C3	C4	D
GWP	[kg CO ₂ -Equiv.]	1,52E+01	6,11E-01	7,09E-01	3,22E-01	1,70E-02	1,74E-01	9,10E+00	2,65E-01	-1,98E-01
ODP	[kg CFC11-Equiv.]	4,89E-08	5,39E-12	4,34E-09	2,30E-09	4,31E-09	3,63E-12	2,33E-07	4,36E-09	-7,94E-11
AP	[kg SO ₂ -Equiv.]	3,01E-02	5,61E-03	5,21E-04	1,35E-03	1,16E-04	8,74E-04	6,45E-03	1,23E-04	-4,96E-04
EP	[kg PO ₄ ³⁻ - Equiv.]	5,36E-03	6,94E-04	5,17E-05	8,29E-05	4,21E-06	2,10E-04	2,43E-04	2,49E-05	-3,31E-05
POCP	[kg Ethen Equiv.]	1,36E-02	-6,83E-05	7,07E-05	9,17E-05	5,96E-06	9,32E-05	3,68E-04	7,12E-05	-4,00E-05
ADPE	[kg Sb Equiv.]	6,29E-05	1,28E-08	1,94E-07	6,36E-08	1,17E-09	8,01E-09	8,26E-06	-1,83E-09	-1,61E-08
ADPF	[MJ]	3,18E+02	5,20E+00	3,21E+00	5,78E+00	3,26E-01	2,38E+00	-5,91E+00	2,36E-01	-3,34E+00

GWP = Global warming potential; ODP = Depletion potential of the stratospheric ozone layer; AP = Acidification potential of land and water; EP = Eutrophication potential; POCP = Formation potential of tropospheric ozone photochemical oxidants; ADPE = Abiotic depletion potential for non fossil resources; ADPF = Abiotic depletion potential for fossil resources

Table 14: Results of the LCA – Resource use for Allura Flex (one year)

		Manufacturing	Instal	lation	Use (1yr)	yr) End of Life				
Parameter	Unit	A1-3	A4	A5	B2	C1	C2	C3	C4	D
PERE	[MJ]	-	-	-	-		-	-	-	-
PERM	[MJ]	-	-	-	-	-	-	-	-	-
PERT	[MJ]	2.91E+01	1.34E-01	7.52E-02	7.88E-01	2.55E-02	1.41E-01	-5.45E-01	-3.38E-02	-2.59E-01
PENRE	[MJ]	-	-	-	-		-	-	-	-
PENRM	[MJ]	-	-	-	-		-	-	-	-
PENRT	[MJ]	3.19E+02	5.20E+00	3.23E+00	5.84E+00	3.30E-01	2.38E+00	-4.85E+00	2.67E-01	-3.35E+00
SM	[kg]	4.79E-01	-	-	-		-	-	-	-
RSF	[MJ]	5.98E-03	3.20E-05	1.79E-04	9.54E-05	0.00E+00	1.77E-05	-4.46E-04	-7.95E-06	-4.77E-05
NRSF	[MJ]	6.26E-02	3.36E-04	1.87E-03	9.99E-04	0.00E+00	1.85E-04	-4.67E-03	-8.32E-05	-5.00E-04
FW	[kg]	5.38E+01	1.84E-01	1.30E+00	5.28E+00	-7.97E-02	1.36E-01	-6.77E+00	-9.44E-01	-7.24E-01

PERE = Use of renewable primary energy excluding renewable primary energy resources used as raw materials; PERM = Use of renewable primary energy resources; PENRE = Use of non-renewable primary energy excluding non-renewable primary energy resources used as raw materials; PENRM = Use of non-renewable primary energy resources used as raw materials; PENRM = Use of non-renewable primary energy resources; SM = Use of secondary material; RSF = Use of renewable secondary fuels; NRSF = Use of non-renewable secondary fuels; FW = Use of net fresh water

Table 15: Results of the LCA – Output flows and Waste categories for Allura Flex (one year)

									•	
		Manufacturing	Transport	Installation	Use (1yr)		End of Life/credits			
Parameter	Unit	A1-3	A4	A5	B2	C1	C2	C3	C4	D
HWD	[kg]	5.58E-03	0.00E+00	3.70E-03	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
NHWD	[kg]	2.26E+01	1.61E-02	2.18E-01	1.12E+00	6.04E-02	1.47E-02	3.53E+00	2.54E-02	3.52E-01
RWD	[kg]	7.14E-03	7.07E-06	7.59E-05	7.12E-04	5.41E-05	3.42E-06	8.44E-04	3.74E-05	2.28E-04
CRU	[kg]	-	=	•	-	-	-	-	-	-
MFR	[kg]	-	=	•	-	-	-	-	-	-
MER	[kg]	-	=	•	-	-	-	5.03E+00	-	-
EE Power	[MJ]	-	-	2.45E-01	-	-	-	4.13E+00	-	-
EE Thermal energy	[MJ]	-	=	4.57E-01	-	-	-	3.31E+01	-	-

HWD = Hazardous waste disposed; NHWD = Non-hazardous waste disposed; RWD = Radioactive waste disposed; CRU = Components for re-use; MFR = Materials for recycling; MER = Materials for energy recovery; EE = Exported energy per energy carrier

Interpretation

The interpretation of the environmental impacts calculated according to EN 15804 are similar to the interpretation according to ISO 14025. A more detailed interpretation for a one year useage is presented in following figures and tables.

Figure 4: relative contribution of each process stage to each impact category for Allura Flex for a one year usage.

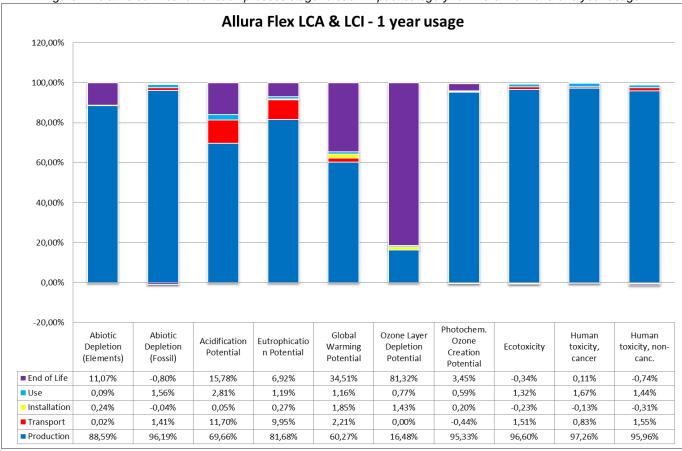


Table 16: Main modules and flows contributing to the total impact in each impact category for Allura Flex for a one year usage

Impact Category	Stage	Module		Main contributor	Main contributing flows
GWP	Production	Raw Material Extraction	13.6 kg CO ₂ - equiv.	DINP (3.02 kg CO ₂ -eq.) PVC (7.24 kg CO ₂ -eq.) Dolomite (2.54 kg CO ₂ -eq.)	Production : Inorganic emissions to air, Carbon dioxide
		Transport of Raw materials	0.04 kg CO ₂ - equiv.	Means of transport (truck, container ship) and their fuels	
		Manufacturing	1.49 kg CO ₂ - equiv.	73% Thermal energy	
	Transport	Transport Gate to User		Means of transport (truck, container ship) and their fuels	Transport & Installation : Inorganic emissions to air, Carbon dioxide
	Installation	Installation		46% Disposal/recycling of packaging 41% Disposal of PVC installation waste	
	Use	Use		82% Electricity 18% Detergent	Use : Inorganic emissions to air, Carbon dioxide
	EOL	EOL		Incineration and land filling of post-consumer Allura Flex Energy substitution from incineration	EOL : Inorganic emissions to air, Carbon dioxide
ODP	Production	Raw Material Extraction	65%	15% DINP 24% Dolomite 16% Fat Acid Ester 24% Plasticizer	Production: Halogenated organic emissions to air, R11 (trichlorofluoromethane), R114 (Dichlorotetrafluorethane), Halon (1301)
		Transport of Raw materials	< 0.01%	Means of transport (truck, container ship) and their fuels	
		Manufacturing	35%	61% Paper and cardboard packaging 38% Non-hazardous waste	
	Transport	Transport Gate to User		Means of transport (truck, container ship) and their fuels	Transport & Installation : Halogenated organic emissions to air, R11 (trichlorofluoromethane),
	Installation	Installation		98% Disposal of PVC installation	R114 (Dichlorotetrafluorethane), Halon (1301)

Impact Category	Stage	Module		Main contributor	Main contributing flows	
	Use	Use		waste 10% Electricity 90% Detergent	Use: Halogenated organic emissions to air, R11 (trichlorofluoromethane), R114 (Dichlorotetrafluorethane)	
	EOL	EOL		Incineration and land filling of post-consumer Allura Flex Energy substitution from incineration	EOL: Halogenated organic emissions to air, R11 (trichlorofluoromethane), R114 (Dichlorotetrafluorethane), Halon (1301)	
		Raw Material Extraction	96%	48% PVC 20% DINP		
	Production	Transport of Raw materials	<0.5%	Means of transport (truck, container ship) and their fuels	Production : Inorganic emissions to air, NO _x	
		Manufacturing	4%	40% Thermal energy 33% Paper and cardboard packaging 24% Non-hazardous waste	and Sulphur dioxide, Ammonia	
AP	Transport	Transport Gate to User		Means of transport (truck, container ship) and their fuels	Transport & Installation : Inorganic emissions to air, NO _x , Hydrogen chloride and Sulphur dioxide	
AP	Installation	Installation		50% Adhesive 36% Disposal of PVC installation waste		
	Use	Use		93% Electricity 7% Detergent	Use : Inorganic emissions to air, NO _x and Sulphur dioxide	
	EOL	EOL		Incineration and land filling of post-consumer Allura Flex Energy substitution from incineration	EOL : Inorganic emissions to air, Hydrogen chloride, NO _x , Hydrogen chloride and Sulphur dioxide	
		Raw Material Extraction	95%	39% Fat Acid Ester 32% PVC		
ЕР	Production	Transport of Raw materials	1%	Means of transport (truck,	Production : Inorganic emissions to air, Ammonia, NO _x	
		Manufacturing	4%	container ship) and their fuels 53% Thermal energy 39% Paper and cardboard packaging	Production : Inorganic emissions to fresh water, Nitrate	
	Transport	Transport Gate to User		Means of transport (truck, container ship) and their fuels		
	Installation	Installation		54% Adhesive 24% Disposal/recycling of packaging 24% Disposal of PVC installation waste	Transport & Installation: Inorganic emissions to air, NO _x Transport & Installation: Inorganic emissions to fresh water, Ammonium / ammonia	
	Use	Use		80% Electricity 20% Detergent	Use : Inorganic emissions to air, NO _x Use : Inorganic emissions to fresh water, Ammonium / ammonia, Nitrate	
	EOL	EOL		Incineration and land filling of post-consumer Allura Flex Energy substitution from incineration	EOL : Inorganic emissions to air, NO _x and Ammonia	
		Raw Material Extraction	59%	56% PVC 33% DINP	Production : Inorganic emissions to air, Carbor monoxide, NO _x , Sulphur dioxide	
	Production	Transport of Raw materials	< 0.3%	Means of transport (truck, container ship) and their fuels	Production: Halogenated organic emissions to air, Butane (n-butane), NMVOC (Unspecified),	
		Manufacturing	41%	63% Thermal energy	VOC (Unspecified)	
	Transport	Transport Gate to User		Means of transport (truck, container ship) and their fuels	Transport & Installation : Inorganic emissions to air, Carbon monoxide, NO _x , Sulphur dioxide	
POCP	Installation	Installation		71% Adhesive 18% Disposal of PVC installation waste	Transport & Installation : Halogenated organic emissions to air, NMVOC (Unspecified),	
	Use	Use		81% electricity 19% Detergent	Use : Inorganic emissions to air, Sulphur dioxide, Nitrogen dioxide	
	EOL	EOL		Incineration and land filling of post-consumer Allura Flex Energy substitution from incineration	EOL: Inorganic emissions to air, Carbon monoxide, NO _x , Sulphur dioxide EOL: Organic emissions to air (Group VOC), NMVOC (Unspecified)	
ADPe	Production	Raw Material Extraction	98%	44% PVC 31% Glass fiber 21% BaZn stearate	Production : Nonrenewable resources,	
		Transport of Raw materials	<0,01%	Means of transport (truck, container ship) and their fuels	Colemanite ore, Sodium chloride (Rock salt) Production : Nonrenewable elements, Lead	
		Manufacturing	2%	72% Electricity 21% Non-hazardous waste	,	
	Transport	Transport Gate to User		Means of transport (truck, container ship) and their fuels	Transport & Installation : Nonrenewable resources, Sodium chloride (rock salt),	
	Installation	Installation		16% Adhesive	Magnesium chloride leach (40%)	

Impact Category	Stage	Module		Main contributor	Main contributing flows
- Janogory				81% Disposal of PVC installation waste	
	Use	Use		57% Electricity 43% Detergent	Use: Nonrenewable resources, Sodium chloride (Rock salt) Use: Nonrenewable elements, Chromium, Copper, Gold, Lead, Molybdenum
	EOL	EOL		Incineration and land filling of post-consumer Allura Flex Energy substitution from incineration	EOL : Nonrenewable resources, Magnesium chloride leach (40%)
	Production	Raw Material Extraction	93%	60% PVC 29% DINP	Production : Crude oil resource, Crude oil (in MJ)
		Transport of Raw materials Manufacturing	<0.2% 7%	Means of transport (truck, container ship) and their fuels 90% Thermal energy	Production: Natural gas (resource), Natural gas (in MJ)
1554	Transport	Transport Gate to User		Means of transport (truck, container ship) and their fuels	Transport & Installation : Crude oil (resource) Transport & Installation : Natural gas (resource),
ADPf	Installation	Installation		73% Adhesive 21% Disposal of PVC installation waste	
	Use	Use		81% electricity 19% Detergent	Use : Hard coal (resource), Natural gas (resource), Uranium (resource)
	EOL	EOL		Incineration and land filling of post-consumer Allura Flex Energy substitution from incineration	EOL : Natural gas (resource) EOL : Crude oil (resource)
	Production	Raw Material Extraction	99%	47% Fat Acid Ester 32% BaZn-stearate	Production: Heavy metals to industrial soil, Copper (+II), Zinc (+II)
		Transport of Raw materials	< 0.4%	Means of transport (truck, container ship) and their fuels	Production: Heavy metals to agricultural soil, Copper (+II), Zinc (+II)
		Manufacturing	1%	10% Thermal energy 76% Paper and cardboard packaging	Production: Heavy metals to fresh water, Copper (+II), Zinc (+II), Nickel (+II)
Fac taviaity	Transport	Transport Gate to User		Means of transport (truck, container ship) and their fuels	Transport & installation : Heavy metals to fresh water, Copper (+II), Nickel (+II), Zinc (+II) Transport & installation : Heavy metals to agricultural soil, Zinc (+II), Copper (+II)
Eco toxicity	Installation	Installation		71% Adhesive 18% Disposal of PVC installation waste	
	Use	Use		7% Detergent 93% Electricity	Use: Heavy metals to air, Zinc (+II) Use: Heavy metals to agricultural soil, Copper (+II), Zinc (+II)
	EOL	EOL		Incineration and land filling of post-consumer Allura Flex Energy substitution from incineration	EOL: Heavy metals to fresh water, Copper (+II), Cadmium (+II) EOL: Heavy metals to agricultural soil, Copper (+II), Zinc (+II)
	Production	Raw Material Extraction	98%	45% PVC 20% Fat Acid Ester 17% BaZn-stearate	Production: Heavy metals to industrial soil, Lead (+II), Mercury (+II) Production: Heavy metals to agricultural soil,
		Transport of Raw materials	< 0.3%	Means of transport (truck, container ship) and their fuels	Lead (+II), Mercury (+II) Production : Heavy metals to air, Mercury (+II)
Human toxicity, cancer		Manufacturing	2%	59% Thermal energy 22% Waste water treatment	Production: Halogenated organic emissions to air, Vinyl chloride (VCM; chloroethene) Production: Heavy metals to fresh water, Chromium (+VI)
	Transport	Transport Gate to User		Means of transport (truck, container ship) and their fuels	Transport & Installation : Heavy metals to air, Mercury (+II) Transport & Installation : Heavy metals to fresh water, Chromium (+VI), Nickel (+II)
	Installation	Installation		74% adhesive 15% Disposal of PVC installation waste	
	Use	Use		85% Electricity 15% Detergent	Use: Heavy metals to air, Mercury (+II) Use: Heavy metals to fresh water, Chromium (+VI) Use: Heavy metals to agricultural soil, Mercury (+II)
	EOL	EOL		Incineration and land filling of post-consumer Allura Flex Energy substitution from incineration	EOL : Heavy metals to air, Mercury (+II) EOL : Heavy metals to agricultural soil, Mercury (+II)
Human toxicity, non canc.	Production	Raw Material Extraction	99%	50% Fat Acid Ester 35% BaZn-stearate	Production : Heavy metals to industrial soil,
		Transport of Raw materials	0.5%	Means of transport (truck, container ship) and their fuels	Zinc (+II), Lead (+II), Mercury (+II) Production: Heavy metals to agricultural soil,
		Manufacturing 0.5%		82% Paper and cardboard packaging	Zinc (+II), Lead (+II), Mercury (+II)

Impact Category	Stage	Module	Main contributor	Main contributing flows
	Transport	Transport Gate to User	Means of transport (truck, container ship) and their fuels	Transport & Installation : Heavy metals to air, Mercury (+II)
	Installation	Installation	72% adhesive Disposal/recycling of packaging	Transport & Installation : Heavy metals to agricultural soil, Lead (+II), Mercury (+II), Zinc (+II)
	Use	Use	99% electricity	Use: Heavy metals to air, Mercury (+II), Zinc (+II) Use: Heavy metals to agricultural soil, Mercury (+II), Zinc (+II)
	EOL	EOL	Incineration and land filling of post-consumer Allura Flex Energy substitution from incineration	EOL : Heavy metals to agricultural soil, Lead (+II), Mercury (+II), Zinc (+II) EOL : Heavy metals to air, Mercury (+II)

Description of Selected Impact Categories

Abiotic Depletion Potential

The abiotic depletion potential covers all natural resources such as metal containing ores, crude oil and mineral raw materials. Abiotic resources include all raw materials from non-living resources that are non-renewable. This impact category describes the reduction of the global amount of non-renewable raw materials. Non-renewable means a time frame of at least 500 years. This impact category covers an evaluation of the availability of natural elements in general, as well as the availability of fossil energy carriers.

ADP (elements) describes the quantity of non-energetic resources directly withdrawn from the geosphere. It reflects the scarcity of the materials in the geosphere and is expressed in Antimony equivalents. The characterization factors are published by the CML, Oers 2010.

Are fossil energy carriers included in the impact category, it is ADP (fossil). Fossil fuels are used similarly to the primary energy consumption; the unit is therefore also MJ. In contrast to the primary fossil energy ADP fossil does not contain uranium, because this does not count as a fossil fuel.

Primary energy consumption

Primary energy demand is often difficult to determine due to the various types of energy source. Primary energy demand is the quantity of energy directly withdrawn from the hydrosphere, atmosphere or geosphere or energy source without any anthropogenic change. For fossil fuels and uranium, this would be the amount of resource withdrawn expressed in its energy equivalent (i.e. the energy content of the raw material). For renewable resources, the energy-characterized amount of biomass consumed would be described. For hydropower, it would be based on the amount of energy that is gained from the change in the potential energy of water (i.e. from the height difference). As aggregated values, the following primary energies are designated:

The total "Primary energy consumption non-renewable", given in MJ, essentially characterizes the gain from the energy sources natural gas, crude oil, lignite, coal and uranium. Natural gas and crude oil will both be used for energy production and as material constituents e.g. in plastics. Coal will primarily be used for energy production. Uranium will only be used for electricity production in nuclear power stations.

The total "Primary energy consumption renewable", given in MJ, is generally accounted separately and comprises hydropower, wind power, solar energy and biomass. It is important that the end energy (e.g. 1 kWh of electricity) and the primary energy used are not miscalculated with each other; otherwise the efficiency for production or supply of the end energy will not be accounted for. The energy content of the manufactured products will be considered as feedstock energy content. It will be characterized by the net calorific value of the product. It represents the still usable energy content.

Waste categories

There are various different qualities of waste. For example, waste can be classed according to German and European waste directives. The modeling principles have changed with the last GaBi4 database update in October 2006. Now all

LCA data sets (electricity generation, raw material etc.) already contain the treatment of the waste with very low waste output at the end of the stage. So the amount of waste is predominantly caused by foreground processes during the production phase. This is important for the interpretation of waste amounts.

From a balancing point of view, it makes sense to divide waste into three categories. The categories overburden/tailings, industrial waste for municipal disposal and hazardous waste will be used.

Overburden / tailings in kg: This category consists of the layer which must be removed in order to access raw material extraction, ash and other raw material extraction conditional materials for disposal. Also included in this category are tailings such as inert rock, slag, red mud etc.

Industrial waste for municipal disposal in kg: This term contains the aggregated values of industrial waste for municipal waste according to 3. AbfVwV TA SiedlABf.

Hazardous waste in kg: This category includes materials that will be treated in a hazardous waste incinerator or hazardous waste landfill, such as painting sludge's, galvanic sludge's, filter dusts or other solid or liquid hazardous waste and radioactive waste from the operation of nuclear power plants and fuel rod production.

Global Warming Potential (GWP)

The mechanism of the greenhouse effect can be observed on a small scale, as the name suggests, in a greenhouse. These effects are also occurring on a global scale. The occurring short-wave radiation from the sun comes into contact with the earth's surface and is partly absorbed (leading to direct warming) and partly reflected as infrared radiation. The reflected part is absorbed by so-called greenhouse gases in the troposphere and is re-radiated in all directions, including back to earth. This results in a warming effect on the earth's surface.

In addition to the natural mechanism, the greenhouse effect is enhanced by human activities. Greenhouse gases that are considered to be caused, or increased, anthropogenically are, for example, carbon dioxide, methane and CFCs. *Figure A1* shows the main processes of the anthropogenic greenhouse effect. An analysis of the greenhouse effect should consider the possible long term global effects.

The global warming potential is calculated in carbon dioxide equivalents (CO₂-Eq.). This means that the greenhouse potential of an emission is given in relation to CO₂. Since the residence time of the gases in the atmosphere is incorporated into the calculation, a time range for the assessment must also be specified. A period of 100 years is customary.

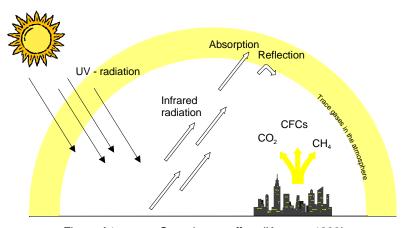


Figure A1: Greenhouse effect (KREISSIG 1999)

Acidification Potential (AP)

The acidification of soils and waters predominantly occurs through the transformation of air pollutants into acids. This leads to a decrease in the pH-value of rainwater and fog from 5.6 to 4 and below. Sulphur dioxide and nitrogen oxide and their respective acids (H_2SO_4 and HNO_3) produce relevant contributions. This damages ecosystems, whereby forest dieback is the most well-known impact.

Acidification has direct and indirect damaging effects (such as nutrients being elutriated from soils or an increased solubility of metals into soils). But even buildings and building materials can be damaged. Examples include metals and natural stones which are corroded or disintegrated at an increased rate.

When analyzing acidification, it should be considered that although it is a global problem, the regional effects of

acidification can vary. Figure A2 displays the primary impact pathways of acidification.

The acidification potential is given in sulphur dioxide equivalents (SO2-Eq.). The acidification potential is described as the ability of certain substances to build and release H+ - ions. Certain emissions can also be considered to have an acidification potential, if the given S-, N- and halogen atoms are set in proportion to the molecular mass of the emission. The reference substance is sulphur dioxide.

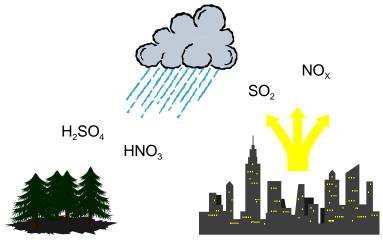


Figure A2: Acidification Potential (KREISSIG 1999)

Eutrophication Potential (EP)

Eutrophication is the enrichment of nutrients in a certain place. Eutrophication can be aquatic or terrestrial. Air pollutants, waste water and fertilization in agriculture all contribute to eutrophication.

The result in water is an accelerated algae growth, which in turn, prevents sunlight from reaching the lower depths. This leads to a decrease in photosynthesis and less oxygen production. In addition, oxygen is needed for the decomposition of dead algae. Both effects cause a decreased oxygen concentration in the water, which can eventually lead to fish dying and to anaerobic decomposition (decomposition without the presence of oxygen). Hydrogen sulphide and methane are thereby produced. This can lead, among others, to the destruction of the eco-system.

On eutrophicated soils, an increased susceptibility of plants to diseases and pests is often observed, as is a degradation of plant stability. If the nutrification level exceeds the amounts of nitrogen necessary for a maximum harvest, it can lead to an enrichment of nitrate. This can cause, by means of leaching, increased nitrate content in groundwater. Nitrate also ends up in drinking water.

Nitrate at low levels is harmless from a toxicological point of view. However, nitrite, a reaction product of nitrate, is toxic to humans. The causes of eutrophication are displayed in Figure A3. The eutrophication potential is calculated in phosphate equivalents (PO4-Eq). As with acidification potential, it's important to remember that the effects of eutrophication potential differ regionally.

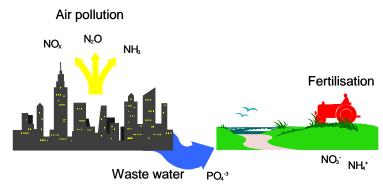


Figure A3: Eutrophication Potential (KREISSIG 1999)

Photochemical Ozone Creation Potential (POCP)

Despite playing a protective role in the stratosphere, at ground-level ozone is classified as a damaging trace gas. Photochemical ozone production in the troposphere, also known as summer smog, is suspected to damage vegetation and material. High concentrations of ozone are toxic to humans.

Radiation from the sun and the presence of nitrogen oxides and hydrocarbons incur complex chemical reactions, producing aggressive reaction products, one of which is ozone. Nitrogen oxides alone do not cause high ozone concentration levels. Hydrocarbon emissions occur from incomplete combustion, in conjunction with petrol (storage, turnover, refueling etc.) or from solvents. High concentrations of ozone arise when the temperature is high, humidity is low, when air is relatively static and when there are high concentrations of hydrocarbons. Today it is assumed that the

existence of NO and CO reduces the accumulated ozone to NO_2 , CO_2 and O_2 . This means, that high concentrations of ozone do not often occur near hydrocarbon emission sources. Higher ozone concentrations more commonly arise in areas of clean air, such as forests, where there is less NO and CO (*Figure A4*).

In Life Cycle Assessments, photochemical ozone creation potential (POCP) is referred to in ethylene-equivalents (C_2H_4 -Äq.). When analyzing, it's important to remember that the actual ozone concentration is strongly influenced by the weather and by the characteristics of the local conditions.

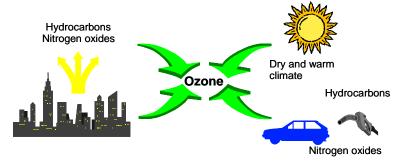


Figure A4: Photochemical Ozone Creation Potential

Ozone Depletion Potential (ODP)

Ozone is created in the stratosphere by the disassociation of oxygen atoms that are exposed to short-wave UV-light. This leads to the formation of the so-called ozone layer in the stratosphere (15 - 50 km high). About 10 % of this ozone reaches the troposphere through mixing processes. In spite of its minimal concentration, the ozone layer is essential for life on earth. Ozone absorbs the short-wave UV-radiation and releases it in longer wavelengths. As a result, only a small part of the UV-radiation reaches the earth.

Anthropogenic emissions deplete ozone. This is well-known from reports on the hole in the ozone layer. The hole is currently confined to the region above Antarctica, however another ozone depletion can be identified, albeit not to the same extent, over the mid-latitudes (e.g. Europe). The substances which have a depleting effect on the ozone can essentially be divided into two groups; the fluorine-chlorine-hydrocarbons (CFCs) and the nitrogen oxides (NOX). *Figure A5* depicts the procedure of ozone depletion.

One effect of ozone depletion is the warming of the earth's surface. The sensitivity of humans, animals and plants to UV-B and UV-A radiation is of particular importance. Possible effects are changes in growth or a decrease in harvest crops (disruption of photosynthesis), indications of tumors (skin cancer and eye diseases) and decrease of sea plankton, which would strongly affect the food chain. In calculating the ozone depletion potential, the anthropogenically released halogenated hydrocarbons, which can destroy many ozone molecules, are recorded first. The so-called Ozone Depletion Potential (ODP) results from the calculation of the potential of different ozone relevant substances.

This is done by calculating, first of all, a scenario for a fixed quantity of emissions of a CFC reference (CFC 11). This results in an equilibrium state of total ozone reduction. The same scenario is considered for each substance under study whereby CFC 11 is replaced by the quantity of the substance. This leads to the ozone depletion potential for each respective substance, which is given in CFC 11 equivalents. An evaluation of the ozone depletion potential should take the long term, global and partly irreversible effects into consideration.

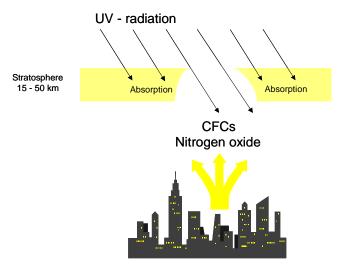


Figure A5: Ozone Depletion Potential (KREISSIG 1999)

References

GABI 5 2012

GABI 5 2012D

NSF International May 22, 2012

UL ENVIRONMENT ERFMI 2008

IBU 2011

PE 2012 ILCD Handbook: General guide for

Life Cycle Assessment - Detailed guidance

STANDARDS AND LAWS **DIN EN ISO 14044**

ISO 14025 2006

ISO 14040 2006

CEN/TR 15941

EN 15804

EN-ISO 11638

CPR

EN-ISO 10874

PE INTERNATIONAL AG; GaBi 5: Software-System and Database for Life Cycle Engineering. Copyright, TM. Stuttgart, Echterdingen, 1992-2012.
GaBi 5: Documentation of GaBi 5: Software-System and Database for Life Cycle Engineering. Copyright, TM. Stuttgart, Echterdingen, 1992-2012.
http://documentation.gabi-software.com/
Product Category Rule for Environmental Product Declarations
Flooring: Carpet, Resilient, Laminate, Ceramic, Wood
UL Environment's Program Operator Rules
Final report: LCA, Environmental Information Sheet and Eco design Model of
Resilient Flooring by order of ERFMI, PE International, 2008
PCR - Part A: Calculation rules for the Life Cycle Assessment and Requirements on
the Background Report, Institut Bauen und Umwelt e.V.
Description of Selected Impact Categories, PE International AG, 2012
European Commission - Joint Research Centre - Institute for Environment and
Sustainability: International Reference Life Cycle Data System (ILCD) Handbook General guide for Life Cycle Assessment - Detailed guidance. First edition March
2010. EUR 24708 EN. Luxembourg. Publications Office of the European Union;

Environmental management - Life cycle assessment - Requirements and guidelines (ISO 14044:2006); German and English version EN ISO 14044
DIN EN ISO 14025: Environmental labels and declarations — Type III
environmental declarations — Principles and procedures
Environmental management - Life cycle assessment - Principles and framework
(ISO 14040); German and English version EN ISO 14040
Sustainability of construction works - Environmental product declarations Methodology for selection and use of generic data; German version CEN/TR 15941
EN 15804: Sustainability of construction works — Environmental Product
Declarations — Core rules for the product category of construction products
Resilient floor coverings — Heterogeneous polyvinyl chloride flooring on foam -Resilient floor coverings - Heterogeneous polyvinyl chloride flooring on foam -

Specification
REGULATION (EU) No 305/2011 OF THE EUROPEAN PARLIAMENT AND OF
THE COUNCIL of 9 March 2011 laying down harmonized conditions for the
marketing of construction products and repealing Council Directive 89/106/EEC
Resilient, textile and laminate floor coverings - Classification